Enter the correct answer in the box.

Rewrite the equation in vertex form by completing the square.

[tex]\[ f(x) = (3x - 9)(x + 1) \][/tex]

[tex]\[ f(x) = \][/tex]



Answer :

To rewrite the equation [tex]\[ f(x) = (3x - 9)(x + 1) \][/tex] in vertex form by completing the square, follow these steps:

1. Expand the given equation:

[tex]\[ f(x) = (3x - 9)(x + 1) \][/tex]

Using distributive property (FOIL method):

[tex]\[ f(x) = 3x \cdot x + 3x \cdot 1 - 9 \cdot x - 9 \cdot 1 \][/tex]
[tex]\[ f(x) = 3x^2 + 3x - 9x - 9 \][/tex]
[tex]\[ f(x) = 3x^2 - 6x - 9 \][/tex]

2. Identify coefficients from the standard form [tex]\( ax^2 + bx + c \)[/tex]:

Here, [tex]\( a = 3 \)[/tex], [tex]\( b = -6 \)[/tex], and [tex]\( c = -9 \)[/tex].

3. Rewrite the quadratic equation in the form [tex]\( a(x - h)^2 + k \)[/tex] by completing the square.

First, factor out the coefficient of [tex]\( x^2 \)[/tex], [tex]\( a = 3 \)[/tex]:

[tex]\[ f(x) = 3(x^2 - 2x) - 9 \][/tex]

4. Complete the square inside the parentheses:

Take the coefficient of [tex]\( x \)[/tex] which is [tex]\(-2\)[/tex], halve it and square it:

[tex]\[ \left(\frac{-2}{2}\right)^2 = 1 \][/tex]

Add and subtract this square inside the parentheses:

[tex]\[ f(x) = 3(x^2 - 2x + 1 - 1) - 9 \][/tex]
[tex]\[ f(x) = 3((x^2 - 2x + 1) - 1) - 9 \][/tex]
[tex]\[ f(x) = 3((x - 1)^2 - 1) - 9 \][/tex]

5. Simplify the expression:

Distribute the [tex]\( 3 \)[/tex]:

[tex]\[ f(x) = 3(x - 1)^2 - 3 - 9 \][/tex]
[tex]\[ f(x) = 3(x - 1)^2 - 12 \][/tex]

So, the equation in vertex form is:

[tex]\[ f(x) = 3(x - 1)^2 - 12 \][/tex]