Sonja's credit card has an APR of [tex]$21\%$[/tex], calculated on the previous monthly balance, and a minimum payment of [tex]$2\%$[/tex], starting the month after the first purchase. Her credit card record for the last 7 months is shown in the table below.

\begin{tabular}{ccccccc}
\hline
\begin{tabular}{c}
End of \\
month
\end{tabular} & \begin{tabular}{c}
Previous \\
balance
\end{tabular} & \begin{tabular}{c}
New \\
charges
\end{tabular} & \begin{tabular}{c}
Payment \\
received
\end{tabular} & \begin{tabular}{c}
Finance \\
charges
\end{tabular} & \begin{tabular}{c}
Principal \\
paid
\end{tabular} & \begin{tabular}{c}
New \\
balance
\end{tabular} \\
\hline
1 & [tex]$\$[/tex] 0.00[tex]$ & $[/tex]\[tex]$ 700.00$[/tex] & [tex]$\$[/tex] 0.00[tex]$ & $[/tex]\[tex]$ 0.00$[/tex] & [tex]$\$[/tex] 0.00[tex]$ & $[/tex]\[tex]$ 700.00$[/tex] \\
2 & [tex]$\$[/tex] 700.00[tex]$ & $[/tex]\[tex]$ 0.00$[/tex] & [tex]$\$[/tex] 14.00[tex]$ & $[/tex]\[tex]$ 12.25$[/tex] & [tex]$\$[/tex] 1.75[tex]$ & $[/tex]\[tex]$ 698.25$[/tex] \\
3 & [tex]$\$[/tex] 698.25[tex]$ & $[/tex]\[tex]$ 0.00$[/tex] & [tex]$\$[/tex] 13.97[tex]$ & $[/tex]\[tex]$ 12.22$[/tex] & [tex]$\$[/tex] 1.75[tex]$ & $[/tex]\[tex]$ 696.50$[/tex] \\
4 & [tex]$\$[/tex] 696.50[tex]$ & $[/tex]\[tex]$ 0.00$[/tex] & [tex]$\$[/tex] 13.93[tex]$ & $[/tex]\[tex]$ 12.19$[/tex] & [tex]$\$[/tex] 1.74[tex]$ & $[/tex]\[tex]$ 694.76$[/tex] \\
5 & [tex]$\$[/tex] 694.76[tex]$ & $[/tex]\[tex]$ 0.00$[/tex] & [tex]$\$[/tex] 13.90[tex]$ & $[/tex]\[tex]$ 12.16$[/tex] & [tex]$\$[/tex] 1.74[tex]$ & $[/tex]\[tex]$ 693.03$[/tex] \\
6 & [tex]$\$[/tex] 693.03[tex]$ & $[/tex]\[tex]$ 0.00$[/tex] & [tex]$\$[/tex] 13.86[tex]$ & $[/tex]\[tex]$ 12.13$[/tex] & [tex]$\$[/tex] 1.73[tex]$ & $[/tex]\[tex]$ 691.29$[/tex] \\
7 & [tex]$\$[/tex] 691.29[tex]$ & $[/tex]\[tex]$ 0.00$[/tex] & [tex]$\$[/tex] 13.83[tex]$ & $[/tex]\[tex]$ 12.10$[/tex] & [tex]$\$[/tex] 1.73[tex]$ & $[/tex]\[tex]$ 689.57$[/tex] \\
\hline
\end{tabular}

About what percentage of Sonja's payments so far have gone to paying interest?

A. [tex]$87\%$[/tex]
B. [tex]$23\%$[/tex]
C. [tex]$10\%$[/tex]
D. [tex]$21\%$[/tex]



Answer :

Let's break down the problem step by step to determine what percentage of Sonja's payments so far have gone to paying interest.

1. Understanding the Table Data:
- We are given a table showing Sonja's credit card activity for the last 7 months.
- For each month, we have values for Previous Balance, New Charges, Payment Received, Finance Charges, Principal Paid, and New Balance.

2. Total Payments Received:
- We need to find the sum of all payments received over the given months.
- The payments received are [tex]\(\$14.00, \$13.97, \$13.93, \$13.90, \$13.86, \text{ and } \$13.83\)[/tex].

[tex]\[ \text{Total Payments Received} = 14.00 + 13.97 + 13.93 + 13.90 + 13.86 + 13.83 = 83.49 \][/tex]

3. Total Finance Charges:
- We need to find the sum of all finance charges over the given months.
- The finance charges are [tex]\(\$12.25, \$12.22, \$12.19, \$12.16, \$12.13, \text{ and } \$12.10\)[/tex].

[tex]\[ \text{Total Finance Charges} = 12.25 + 12.22 + 12.19 + 12.16 + 12.13 + 12.10 = 73.05 \][/tex]

4. Percentage of Payments That Went to Interest:
- The interest payments are represented by the finance charges, and we want to find out what percentage of the total payments received represents this interest.
- The formula to calculate the percentage of payments that went to interest is:

[tex]\[ \text{Percentage Interest} = \left( \frac{\text{Total Finance Charges}}{\text{Total Payments Received}} \right) \times 100 \][/tex]

Substituting the values we obtained:

[tex]\[ \text{Percentage Interest} = \left( \frac{73.05}{83.49} \right) \times 100 \approx 87.50\% \][/tex]

5. Choosing the Closest Answer:
- The closest option to [tex]\(87.50\%\)[/tex] is [tex]\(87\%\)[/tex].

Therefore, about [tex]\(87\%\)[/tex] of Sonja's payments so far have gone to paying interest. The correct answer is:

[tex]\[ \boxed{87\%} \][/tex]