Perform the operation and simplify.

[tex]\[
\frac{4x^2 y}{xy} \cdot \frac{y^2}{2x^3}
\][/tex]

[tex]\[
\frac{[?] y}{x}
\][/tex]

[tex]\(\square\)[/tex]

Enter:



Answer :

Let's break down the multiplication and simplification of the given expression step by step:

Given expression:
[tex]\[ \frac{4 x^2 y}{x y} \cdot \frac{y^2}{2 x^3} \][/tex]

### Step 1: Simplify [tex]\(\frac{4 x^2 y}{x y}\)[/tex]
1. In the numerator, [tex]\(4 x^2 y\)[/tex] can be split as:
[tex]\[ 4 \cdot x^2 \cdot y \][/tex]

2. In the denominator, [tex]\(x y\)[/tex] can be split as:
[tex]\[ x \cdot y \][/tex]

3. Cancel the common terms [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the numerator and denominator:
[tex]\[ \frac{4 x^2 y}{x y} = 4 x \][/tex]
because [tex]\(x^2/x = x\)[/tex] and [tex]\(y/y = 1\)[/tex].

### Step 2: Simplify [tex]\(\frac{y^2}{2 x^3}\)[/tex]
This fraction remains as it is because it is already in its simplest form.

### Step 3: Multiply the simplified fractions
Now, multiply the results from Step 1 and Step 2:
[tex]\[ 4 x \cdot \frac{y^2}{2 x^3} \][/tex]

### Step 4: Perform multiplication
1. Multiply the numerators:
[tex]\[ 4 x \cdot y^2 = 4 x y^2 \][/tex]

2. Multiply the denominators:
[tex]\[ 1 \cdot 2 x^3 = 2 x^3 \][/tex]

3. Combine the fraction:
[tex]\[ \frac{4 x y^2}{2 x^3} \][/tex]

### Step 5: Simplify the resulting fraction
1. Divide the numerator and the denominator by the common factor 2:
[tex]\[ \frac{4 x y^2}{2 x^3} = \frac{2 y^2}{x^2} \][/tex]

### Step 6: Write the final answer
[tex]\[ \boxed{\frac{2 y^2}{x^2}} \][/tex]