Perform the operation and simplify.

[tex]\[ \frac{3x}{2x+1} \cdot \frac{x+1}{4x} \][/tex]

(Note: The second expression provided, "[tex]\(\frac{3 x+[?]}{x+}\)[/tex]", appears to be incomplete or nonsensical, so it has been omitted.)



Answer :

To solve the problem of performing the operation and simplifying the product of the given fractions, let's go through a step-by-step solution.

We start with the following fractions:
[tex]\[ \frac{3x}{2x + 1} \cdot \frac{x + 1}{4x} \][/tex]

Step 1: Multiply the numerators and the denominators.

Multiply the numerators:
[tex]\[ (3x) \cdot (x + 1) = 3x(x + 1) = 3x^2 + 3x \][/tex]

Multiply the denominators:
[tex]\[ (2x + 1) \cdot 4x = 4x(2x + 1) = 8x^2 + 4x \][/tex]

So, the resulting fraction after multiplication is:
[tex]\[ \frac{3x^2 + 3x}{8x^2 + 4x} \][/tex]

Step 2: Simplify the fraction by factoring out the greatest common divisor (GCD).

Identify the greatest common divisor (GCD):
- For the numerator [tex]\(3x^2 + 3x\)[/tex], the GCD is [tex]\(3x\)[/tex].
- For the denominator [tex]\(8x^2 + 4x\)[/tex], the GCD is [tex]\(4x\)[/tex].

Factor out the GCD:

Numerator:
[tex]\[ 3x^2 + 3x = 3x(x + 1) \][/tex]

Denominator:
[tex]\[ 8x^2 + 4x = 4x(2x + 1) \][/tex]

So, the fraction is now:
[tex]\[ \frac{3x(x + 1)}{4x(2x + 1)} \][/tex]

Step 3: Cancel any common factors in the numerator and the denominator.

In the fraction [tex]\(\frac{3x(x + 1)}{4x(2x + 1)}\)[/tex], we see that [tex]\(x\)[/tex] is a common factor in both the numerator and the denominator. Cancel the [tex]\(x\)[/tex]:

[tex]\[ \frac{3(x + 1)}{4(2x + 1)} \][/tex]

Step 4: Write the simplified result.

The simplified fraction is:
[tex]\[ \frac{3(x + 1)}{4(2x + 1)} \][/tex]

Therefore, the answer to the operation and simplification is:
[tex]\[ \boxed{\frac{3(x + 1)}{4(2x + 1)}} \][/tex]