Use the elimination method to solve the system of equations.

[tex]\[
\begin{array}{l}
2x + 3y = 18 \\
3x - 3y = 12
\end{array}
\][/tex]

A. [tex]\((2,4)\)[/tex]
B. [tex]\((6,2)\)[/tex]
C. [tex]\((6,10)\)[/tex]
D. [tex]\((2,6)\)[/tex]



Answer :

To solve the system of equations using the elimination method, we perform the following steps:

Given:
[tex]\[ \begin{array}{l} 2x + 3y = 18 \quad \text{(1)} \\ 3x - 3y = 12 \quad \text{(2)} \end{array} \][/tex]

Step 1: Eliminate [tex]\( y \)[/tex]

To eliminate [tex]\( y \)[/tex], we can add the two equations directly. Observe that in equation (2), the coefficient of [tex]\( y \)[/tex] is [tex]\(-3\)[/tex], which is the negative of the coefficient of [tex]\( y \)[/tex] in equation (1). Adding them will cancel out [tex]\( y \)[/tex].

So, add (1) and (2):

[tex]\[ (2x + 3y) + (3x - 3y) = 18 + 12 \][/tex]

Simplifying:

[tex]\[ 2x + 3x + 3y - 3y = 30 \][/tex]

[tex]\[ 5x = 30 \][/tex]

Dividing both sides by 5:

[tex]\[ x = 6 \][/tex]

Step 2: Substitute [tex]\( x = 6 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]

We can use either equation (1) or (2). Let's use equation (1):

[tex]\[ 2x + 3y = 18 \][/tex]

Substitute [tex]\( x = 6 \)[/tex]:

[tex]\[ 2(6) + 3y = 18 \][/tex]

[tex]\[ 12 + 3y = 18 \][/tex]

Subtract 12 from both sides:

[tex]\[ 3y = 6 \][/tex]

Divide both sides by 3:

[tex]\[ y = 2 \][/tex]

Step 3: Write down the solution

The solution to the system of equations is [tex]\( (x, y) = (6, 2) \)[/tex].

So, the answer is:

[tex]\[ B. (6, 2) \][/tex]
B. (6,2) is the answee