Perform the following operation and express the answer in correct scientific notation.

[tex]\[
\frac{3.14 \times 10^{-2}}{2.65 \times 10^{-7}} = [?] \times 10^{[?]}
\][/tex]



Answer :

To solve the problem [tex]\( \frac{3.14 \times 10^{-2}}{2.65 \times 10^{-7}} \)[/tex] and express the answer in scientific notation, we can follow these steps:

1. Separate the Coefficients and Powers of 10:
[tex]\[ \frac{3.14 \times 10^{-2}}{2.65 \times 10^{-7}} = \frac{3.14}{2.65} \times \frac{10^{-2}}{10^{-7}} \][/tex]

2. Divide the Coefficients:
[tex]\[ \frac{3.14}{2.65} \approx 1.1849056603773587 \][/tex]

3. Divide the Powers of 10:
[tex]\[ \frac{10^{-2}}{10^{-7}} = 10^{-2 - (-7)} = 10^{-2 + 7} = 10^5 \][/tex]

4. Combine the Results:
[tex]\[ 1.1849056603773587 \times 10^5 \][/tex]

5. Express the Final Answer in Correct Scientific Notation:
The result from the operation is [tex]\( 118490.56603773586 \)[/tex], which can be written in scientific notation as [tex]\( 1.1849056603773587 \times 10^5 \)[/tex].

Therefore, the answer to the operation [tex]\(\frac{3.14 \times 10^{-2}}{2.65 \times 10^{-7}}\)[/tex] expressed in scientific notation is:
[tex]\[ 1.1849056603773587 \times 10^5 \][/tex]