10) If [tex] r! \times \left({ }^{n-1} C_{r-1} + { }^{n-1} C_r \right) + (r+1)! \times \left({ }^{n-1} C_r + { }^{n-1} C_{r+1} \right) = x [/tex], then for [tex] n = 5 [/tex] and [tex] r = 2 [/tex], calculate the value of [tex] x [/tex].



Answer :

To solve the given expression for [tex]\( n = 5 \)[/tex] and [tex]\( r = 2 \)[/tex], we will break down the problem step by step to find the value of [tex]\( x \)[/tex].

The expression to evaluate is:
[tex]\[ r! \times \left( \binom{n-1}{r-1} + \binom{n-1}{r} \right) + (r+1)! \times \left( \binom{n-1}{r} + \binom{n-1}{r+1} \right) = x \][/tex]

First, we need to calculate the factorials and binomial coefficients involved.

1. Factorials:
- [tex]\( r! \)[/tex]:
[tex]\[ r! = 2! = 2 \times 1 = 2 \][/tex]
- [tex]\( (r+1)! \)[/tex]:
[tex]\[ (r+1)! = 3! = 3 \times 2 \times 1 = 6 \][/tex]

2. Binomial Coefficients:
- [tex]\( \binom{n-1}{r-1} \)[/tex]:
[tex]\[ \binom{n-1}{r-1} = \binom{4}{1} = \frac{4!}{1!(4-1)!} = \frac{4!}{1! \cdot 3!} = \frac{4 \times 3!}{1 \times 3!} = 4 \][/tex]

- [tex]\( \binom{n-1}{r} \)[/tex]:
[tex]\[ \binom{n-1}{r} = \binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4!}{2! \cdot 2!} = \frac{24}{4} = 6 \][/tex]

- [tex]\( \binom{n-1}{r+1} \)[/tex]:
[tex]\[ \binom{n-1}{r+1} = \binom{4}{3} = \frac{4!}{3!(4-3)!} = \frac{4!}{3! \cdot 1!} = \frac{24}{6} = 4 \][/tex]

3. First Term:
- Calculate [tex]\( \binom{n-1}{r-1} + \binom{n-1}{r} \)[/tex]:
[tex]\[ \binom{4}{1} + \binom{4}{2} = 4 + 6 = 10 \][/tex]

- Multiply by [tex]\( r! \)[/tex]:
[tex]\[ r! \times \left( \binom{n-1}{r-1} + \binom{n-1}{r} \right) = 2 \times 10 = 20 \][/tex]

4. Second Term:
- Calculate [tex]\( \binom{n-1}{r} + \binom{n-1}{r+1} \)[/tex]:
[tex]\[ \binom{4}{2} + \binom{4}{3} = 6 + 4 = 10 \][/tex]

- Multiply by [tex]\( (r+1)! \)[/tex]:
[tex]\[ (r+1)! \times \left( \binom{n-1}{r} + \binom{n-1}{r+1} \right) = 6 \times 10 = 60 \][/tex]

5. Total Value [tex]\( x \)[/tex]:
- Add the first term and the second term:
[tex]\[ x = 20 + 60 = 80 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 80 \)[/tex].