A triangle has side lengths measuring [tex]\( 2x + 2 \text{ ft}, x + 3 \text{ ft}, \)[/tex] and [tex]\( \pi \text{ ft} \)[/tex].

Which expression represents the possible values of [tex]\( n \)[/tex], in feet? Express your answer in simplest terms.

A. [tex]\( x - 1 \ \textless \ n \ \textless \ 3x + 5 \)[/tex]
B. [tex]\( n = 3x + 5 \)[/tex]
C. [tex]\( n = x - 1 \)[/tex]
D. [tex]\( 3x + 5 \ \textless \ n \ \textless \ x - 1 \)[/tex]



Answer :

To solve for the possible values of [tex]\( n \)[/tex], let us consider the side lengths of the triangle, which are [tex]\( 2x + 2 \)[/tex] feet, [tex]\( x + 3 \)[/tex] feet, and [tex]\(\pi t\)[/tex].

According to the triangle inequality theorem, for any triangle with sides [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex], the following conditions must hold:
1. [tex]\( a + b > c \)[/tex]
2. [tex]\( a + c > b \)[/tex]
3. [tex]\( b + c > a \)[/tex]

Given the sides [tex]\( 2x + 2 \)[/tex], [tex]\( x + 3 \)[/tex], and [tex]\(\pi t\)[/tex], we apply the triangle inequality theorem:

1. [tex]\((2x + 2) + (x + 3) > \pi t \)[/tex]
2. [tex]\((2x + 2) + \pi t > x + 3 \)[/tex]
3. [tex]\((x + 3) + \pi t > 2x + 2 \)[/tex]

Next, solve these inequalities individually.

First Inequality:
[tex]\[ (2x + 2) + (x + 3) > \pi t \][/tex]
[tex]\[ 3x + 5 > \pi t \][/tex]

Second Inequality:
[tex]\[ (2x + 2) + \pi t > x + 3 \][/tex]
[tex]\[ 2x + 2 + \pi t > x + 3 \][/tex]
[tex]\[ \pi t > x + 1\][/tex]

Third Inequality:
[tex]\[ (x + 3) + \pi t > 2x + 2 \][/tex]
[tex]\[ x + \pi t + 3 > 2x + 2 \][/tex]
[tex]\[ \pi t > x - 1 \][/tex]

After examining the inequalities, observing that [tex]\( \pi t \)[/tex] must be between two bounds, we get:
[tex]\[ x - 1 < \pi t < 3x + 5 \][/tex]

Hence, the values of [tex]\( n \)[/tex] (in terms of [tex]\(\pi t\)[/tex]) should be in the range:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]

So the expression representing the possible values of [tex]\( n \)[/tex] is:
[tex]\[ \boxed{x - 1 < n < 3x + 5} \][/tex]