Solve the equation [tex]\(12(1+w)^7=4\)[/tex]. Assume that [tex]\(1+w\ \textgreater \ 0\)[/tex]. Round the answer to the nearest thousandth (3 decimal places).

[tex]\[w = \][/tex]



Answer :

To solve the equation [tex]\(12(1+w)^7 = 4\)[/tex] for [tex]\(w\)[/tex], given the constraint [tex]\(1+w>0\)[/tex], follow these steps:

1. Isolate the term involving the exponent:
[tex]\[ 12(1+w)^7 = 4 \implies (1+w)^7 = \frac{4}{12} \][/tex]
Simplify the fraction on the right-hand side:
[tex]\[ (1+w)^7 = \frac{1}{3} \][/tex]

2. Take the seventh root of both sides to solve for [tex]\(1 + w\)[/tex]:
[tex]\[ 1+w = \left(\frac{1}{3}\right)^{\frac{1}{7}} \][/tex]
Let’s denote the seventh root of [tex]\(\frac{1}{3}\)[/tex] for simplicity:
[tex]\[ 1+w = 0.854751 \][/tex]

3. Isolate [tex]\(w\)[/tex] by subtracting 1 from both sides:
[tex]\[ w = 0.854751 - 1 \][/tex]
[tex]\[ w = -0.145249 \][/tex]

4. Round the answer to the nearest thousandth:
[tex]\[ w \approx -0.145 \][/tex]

So, the value of [tex]\(w\)[/tex] rounded to the nearest thousandth is:
[tex]\[ w \approx -0.145 \][/tex]