Sure! Let's simplify the expression step-by-step:
Given the expression:
[tex]\[ 8 + \frac{18}{z} + 2c \][/tex]
We need to substitute the given values:
[tex]\[ z = -6 \][/tex]
[tex]\[ c = 2 \][/tex]
Substitute [tex]\(z\)[/tex] and [tex]\(c\)[/tex] into the expression:
[tex]\[ 8 + \frac{18}{-6} + 2 \times 2 \][/tex]
Now let's simplify each part of the expression:
1. Calculate the division:
[tex]\[ \frac{18}{-6} = -3 \][/tex]
So the expression now is:
[tex]\[ 8 + (-3) + 2 \times 2 \][/tex]
2. Calculate the multiplication:
[tex]\[ 2 \times 2 = 4 \][/tex]
Now the expression is:
[tex]\[ 8 - 3 + 4 \][/tex]
3. Simplify by performing the addition and subtraction from left to right:
[tex]\[ 8 - 3 = 5 \][/tex]
[tex]\[ 5 + 4 = 9 \][/tex]
Therefore, the simplified value of the expression is:
[tex]\[ 9.0 \][/tex]