14. If [tex]x = a[/tex] and [tex]y = b[/tex] is the solution of the equations [tex]x - y = 2[/tex] and [tex]x + y = 4[/tex], then the values of [tex]a[/tex] and [tex]b[/tex], respectively, are:

(a) 3 and 5
(b) 5 and 3
(c) 3 and 1
(d) -1 and -3



Answer :

To find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the given system of linear equations [tex]\( x - y = 2 \)[/tex] and [tex]\( x + y = 4 \)[/tex], we follow these steps:

1. Write the Equations:
We are given the system of equations:
[tex]\[ x - y = 2 \quad \text{(Equation 1)} \][/tex]
[tex]\[ x + y = 4 \quad \text{(Equation 2)} \][/tex]

2. Add the Equations:
Adding Equation 1 and Equation 2 helps eliminate [tex]\(y\)[/tex]:
[tex]\[ (x - y) + (x + y) = 2 + 4 \][/tex]
Simplifying, we get:
[tex]\[ 2x = 6 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
Divide both sides by 2:
[tex]\[ x = 3 \][/tex]

4. Substitute [tex]\(x\)[/tex] into One of the Original Equations:
Substitute [tex]\(x = 3\)[/tex] into Equation 1 to find [tex]\(y\)[/tex]:
[tex]\[ 3 - y = 2 \][/tex]
Solving for [tex]\(y\)[/tex], we get:
[tex]\[ y = 3 - 2 \][/tex]
[tex]\[ y = 1 \][/tex]

Thus, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are [tex]\(a = 3\)[/tex] and [tex]\(b = 1\)[/tex].

Therefore, the correct option is:
(c) 3 and 1