Answer :

Certainly! To simplify the expression [tex]\( h - 4k \)[/tex] given [tex]\( h = 8 \)[/tex] and [tex]\( k = -9 \)[/tex], let's follow these steps:

1. Substitute the given values into the expression:
The expression is [tex]\( h - 4k \)[/tex]. Replace [tex]\( h \)[/tex] with 8 and [tex]\( k \)[/tex] with -9:

[tex]\[ 8 - 4(-9) \][/tex]

2. Simplify inside the parentheses:
Before we proceed, let's handle the multiplication inside the parentheses. Multiply 4 by -9:

[tex]\[ 4 \times (-9) = -36 \][/tex]

3. Substitute the result back into the expression:
Now, your expression becomes:

[tex]\[ 8 - (-36) \][/tex]

4. Simplify by removing the double negative:
Subtracting a negative number is the same as adding the positive equivalent. Therefore:

[tex]\[ 8 + 36 \][/tex]

5. Add the values together:
Finally, add 8 and 36:

[tex]\[ 8 + 36 = 44 \][/tex]

Therefore, the simplified result of the given expression [tex]\( h - 4k \)[/tex] when [tex]\( h = 8 \)[/tex] and [tex]\( k = -9 \)[/tex] is [tex]\( \boxed{44} \)[/tex].