Gravel is being dumped from a conveyor belt at a rate of 20 cubic feet per minute. It forms a pile in the shape of a right circular cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 20 feet high?

Recall that the volume of a right circular cone with height [tex]\(h\)[/tex] and radius of the base [tex]\(r\)[/tex] is given by:

[tex]\[
V = \frac{1}{3} \pi r^2 h
\][/tex]



Answer :

To determine how fast the height of the gravel pile is increasing when the pile is 20 feet high, we'll use the given parameters. Let's break down the problem step-by-step:

### Step 1: Identify the Given Information
1. Gravel is being dumped at a rate of [tex]\( 20 \)[/tex] cubic feet per minute. This is the rate of change of the volume ([tex]\( \frac{dV}{dt} \)[/tex]).
2. The height of the pile is [tex]\( h = 20 \)[/tex] feet when we are evaluating.
3. The base diameter and height of the cone are always equal. Therefore, the diameter [tex]\( d = h \)[/tex], and the radius [tex]\( r = \frac{d}{2} = \frac{h}{2} \)[/tex].

### Step 2: Write the Volume Formula
The volume [tex]\( V \)[/tex] of a right circular cone is given by:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

Since [tex]\( r = \frac{h}{2} \)[/tex]:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{h}{2}\right)^2 h = \frac{1}{3} \pi \left(\frac{h^2}{4}\right) h = \frac{1}{12} \pi h^3 \][/tex]

### Step 3: Differentiate the Volume with Respect to Time
To find how fast the height [tex]\( h \)[/tex] is increasing with respect to time, we need to differentiate [tex]\( V \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dV}{dt} = \frac{d}{dt} \left(\frac{1}{12} \pi h^3 \right) \][/tex]

Using the chain rule:
[tex]\[ \frac{dV}{dt} = \frac{1}{12} \pi \cdot 3h^2 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dV}{dt} = \frac{1}{4} \pi h^2 \frac{dh}{dt} \][/tex]

### Step 4: Solve for [tex]\( \frac{dh}{dt} \)[/tex]
Given [tex]\( \frac{dV}{dt} = 20 \)[/tex] cubic feet per minute, and [tex]\( h = 20 \)[/tex] feet, we can substitute these values into the equation:
[tex]\[ 20 = \frac{1}{4} \pi (20)^2 \frac{dh}{dt} \][/tex]

Simplify and solve for [tex]\( \frac{dh}{dt} \)[/tex]:
[tex]\[ 20 = \frac{1}{4} \pi \cdot 400 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ 20 = 100 \pi \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{20}{100 \pi} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{1}{5 \pi} \][/tex]

Convert this to a decimal:
[tex]\[ \frac{dh}{dt} \approx 0.06366197723675814 \][/tex]

Therefore, the height of the pile is increasing at a rate of approximately [tex]\( 0.06366 \)[/tex] feet per minute when the pile is 20 feet high.