Copy and complete the table of values for [tex]$y=x^2+x$[/tex].

What numbers replace [tex][tex]$A$[/tex], [tex]$B$[/tex], and $C$[/tex]?

\begin{tabular}{c||c|c|c|c|c}
[tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 \\
\hline
[tex]$y$[/tex] & 2 & [tex]$A$[/tex] & [tex]$B$[/tex] & 2 & [tex]$C$[/tex] \\
\end{tabular}



Answer :

To complete the table of values for the function [tex]\( y = x^2 + x \)[/tex], we will evaluate the expression for each given value of [tex]\( x \)[/tex] and fill in the corresponding [tex]\( y \)[/tex] values.

Let's go through each calculation:

1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ y = (-2)^2 + (-2) = 4 - 2 = 2 \][/tex]
So, when [tex]\( x = -2 \)[/tex], [tex]\( y = 2 \)[/tex].

2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = (-1)^2 + (-1) = 1 - 1 = 0 \][/tex]
So, when [tex]\( x = -1 \)[/tex], [tex]\( y = 0 \)[/tex]. This means [tex]\( A = 0 \)[/tex].

3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0^2 + 0 = 0 + 0 = 0 \][/tex]
So, when [tex]\( x = 0 \)[/tex], [tex]\( y = 0 \)[/tex]. This means [tex]\( B = 0 \)[/tex].

4. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 1^2 + 1 = 1 + 1 = 2 \][/tex]
So, when [tex]\( x = 1 \)[/tex], [tex]\( y = 2 \)[/tex].

5. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 2^2 + 2 = 4 + 2 = 6 \][/tex]
So, when [tex]\( x = 2 \)[/tex], [tex]\( y = 6 \)[/tex]. This means [tex]\( C = 6 \)[/tex].

Now, we can fill in the table:
[tex]\[ \begin{tabular}{c||c|c|c|c|c} $x$ & -2 & -1 & 0 & 1 & 2 \\ \hline $y$ & 2 & 0 & 0 & 2 & 6 \\ \end{tabular} \][/tex]

Therefore, the numbers that replace [tex]\( A \)[/tex], [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are:
[tex]\[ A = 0, \quad B = 0, \quad C = 6. \][/tex]