Use the substitution method to solve the system of equations. Choose the correct ordered pair.

[tex]\[
\begin{array}{l}
16x - 2y = 74 \\
2x - 2y = 4
\end{array}
\][/tex]

A. [tex]\((6, 0)\)[/tex]
B. [tex]\((5, 0)\)[/tex]
C. [tex]\((6, 3)\)[/tex]
D. [tex]\((5, 3)\)[/tex]



Answer :

To solve the system of equations using the substitution method, follow these steps:

Given equations:
[tex]\[ \begin{array}{l} 16x - 2y = 74 \\ 2x - 2y = 4 \end{array} \][/tex]

Step 1: Solve one of the equations for one variable in terms of the other. Let’s solve the second equation for [tex]\(y\)[/tex].

Equation 2:
[tex]\[ 2x - 2y = 4 \][/tex]

Divide by 2 to simplify:
[tex]\[ x - y = 2 \][/tex]

Rearrange to solve for [tex]\(y\)[/tex]:
[tex]\[ y = x - 2 \][/tex]

Step 2: Substitute this expression for [tex]\(y\)[/tex] into the first equation.

First Equation:
[tex]\[ 16x - 2y = 74 \][/tex]

Substitute [tex]\(y = x - 2\)[/tex] into the first equation:
[tex]\[ 16x - 2(x - 2) = 74 \][/tex]

Step 3: Distribute and simplify:
[tex]\[ 16x - 2x + 4 = 74 \][/tex]

Combine like terms:
[tex]\[ 14x + 4 = 74 \][/tex]

Step 4: Isolate [tex]\(x\)[/tex]:
[tex]\[ 14x = 70 \][/tex]

Step 5: Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 5 \][/tex]

Step 6: Substitute [tex]\(x = 5\)[/tex] back into the expression we found for [tex]\(y\)[/tex]:
[tex]\[ y = x - 2 \][/tex]
[tex]\[ y = 5 - 2 \][/tex]
[tex]\[ y = 3 \][/tex]

Step 7: Write the solution as an ordered pair:
[tex]\[ (x, y) = (5, 3) \][/tex]

Therefore, the correct ordered pair is:
[tex]\[ \boxed{D. (5,3)} \][/tex]