Use the substitution method to solve the system of equations. Choose the correct ordered pair.

[tex]\[
\begin{array}{l}
2x - y = 10 \\
2x - 2y = 4
\end{array}
\][/tex]

A. [tex]\((2, -1)\)[/tex]
B. [tex]\((8, 6)\)[/tex]
C. [tex]\((7, 4)\)[/tex]
D. [tex]\((2, -2)\)[/tex]



Answer :

To solve the system of equations using the substitution method, follow these steps:

Given system of equations:
[tex]\[ \begin{array}{l} 2 x - y = 10 \quad \text{(Equation 1)} \\ 2 x - 2 y = 4 \quad \text{(Equation 2)} \end{array} \][/tex]

1. Solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] from Equation 1:
[tex]\[ 2 x - y = 10 \][/tex]
Rearrange to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 2 x - 10 \][/tex]

2. Substitute the expression for [tex]\( y \)[/tex] into Equation 2:
Substitute [tex]\( y = 2 x - 10 \)[/tex] into [tex]\( 2 x - 2 y = 4 \)[/tex]:
[tex]\[ 2 x - 2(2 x - 10) = 4 \][/tex]

3. Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 2 x - 2(2 x) + 20 = 4 \\ 2 x - 4 x + 20 = 4 \\ -2 x + 20 = 4 \][/tex]
Subtract 20 from both sides:
[tex]\[ -2 x = 4 - 20 \\ -2 x = -16 \][/tex]
Divide both sides by -2:
[tex]\[ x = 8 \][/tex]

4. Substitute [tex]\( x = 8 \)[/tex] back into the expression for [tex]\( y \)[/tex]:
Using the expression [tex]\( y = 2 x - 10 \)[/tex]:
[tex]\[ y = 2(8) - 10 \\ y = 16 - 10 \\ y = 6 \][/tex]

5. Conclusion:
The solution to the system of equations is the ordered pair [tex]\((8, 6)\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{(8, 6)} \][/tex]