Solve the equation. Be sure to check your proposed solution by substituting it for the variable in the original equation.

[tex]\[ 6y - 8 = 9y + 7 \][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. The solution set is [tex]\(\{ \}\)[/tex]. (Type an integer or a simplified fraction.)
B. The solution set is [tex]\(\{ x \mid x \text{ is a real number} \}\)[/tex].
C. The solution set is [tex]\(\varnothing\)[/tex].



Answer :

Let's solve the equation step-by-step:

The given equation is:
[tex]\[ 6y - 8 = 9y + 7 \][/tex]

Step 1: Isolate the variable [tex]\( y \)[/tex]. Start by moving all the [tex]\( y \)[/tex]-terms to one side and constant terms to the other side. Subtract [tex]\( 6y \)[/tex] from both sides:
[tex]\[ 6y - 8 - 6y = 9y + 7 - 6y \][/tex]
This simplifies to:
[tex]\[ -8 = 3y + 7 \][/tex]

Step 2: Next, isolate [tex]\( 3y \)[/tex] by subtracting 7 from both sides:
[tex]\[ -8 - 7 = 3y + 7 - 7 \][/tex]
This simplifies to:
[tex]\[ -15 = 3y \][/tex]

Step 3: Finally, solve for [tex]\( y \)[/tex] by dividing both sides by 3:
[tex]\[ y = \frac{-15}{3} \][/tex]
[tex]\[ y = -5 \][/tex]

So, the proposed solution is [tex]\( y = -5 \)[/tex].

Step 4: Verify the solution by substituting [tex]\( y = -5 \)[/tex] back into the original equation:
[tex]\[ 6y - 8 = 9y + 7 \][/tex]
Substitute [tex]\( y = -5 \)[/tex]:
[tex]\[ 6(-5) - 8 \stackrel{?}{=} 9(-5) + 7 \][/tex]
[tex]\[ -30 - 8 \stackrel{?}{=} -45 + 7 \][/tex]
[tex]\[ -38 = -38 \][/tex]

The left-hand side equals the right-hand side when [tex]\( y = -5 \)[/tex], so the solution [tex]\( y = -5 \)[/tex] checks out.

Therefore, the solution set is:
[tex]\[ \{-5\} \][/tex]

Hence, the correct choice is:
A. The solution set is \{-5\}.

Answer:

hello

Step-by-step explanation:

6y-8=9y+7

6y-9y-8=9y-9y+7

-3y-8+8=7+8

-3y=15

(-3y)/-3=15/-3

y=-5

The solution set is : -5

Verification:

6*-5-8=9*-5+7

-30-8=-45+7

-38=-38