Solve and check the equation.

[tex]\[2(5 - 3x) = 2(5x + 1)\][/tex]

Select the correct choice below and, if necessary, fill in any answer box to complete your answer.

A. The solution set is [tex]\(\{\ \square\ \}\)[/tex].

B. The solution set is [tex]\(\{x \mid x \text{ is a real number}\}\)[/tex].

C. The solution set is [tex]\(\varnothing\)[/tex].



Answer :

Sure, let's solve the given equation step-by-step.

### Step 1: Distribute the 2 on both sides of the equation.
Given:
[tex]\[ 2(5 - 3x) = 2(5x + 1) \][/tex]

Distribute the 2:
[tex]\[ 2 \cdot 5 - 2 \cdot 3x = 2 \cdot 5x + 2 \cdot 1 \][/tex]

This simplifies to:
[tex]\[ 10 - 6x = 10x + 2 \][/tex]

### Step 2: Combine like terms to solve for [tex]\( x \)[/tex].
Move all terms involving [tex]\( x \)[/tex] to one side and constants to the other side:

First, we subtract [tex]\( 10x \)[/tex] from both sides:
[tex]\[ 10 - 6x - 10x = 2 \][/tex]
[tex]\[ 10 - 16x = 2 \][/tex]

Next, we subtract 2 from both sides:
[tex]\[ 10 - 16x - 2 = 0 \][/tex]
[tex]\[ 8 - 16x = 0 \][/tex]

### Step 3: Solve the equation for [tex]\( x \)[/tex].
Subtract 8 from both sides:
[tex]\[ -16x = -8 \][/tex]

Now divide both sides by -16:
[tex]\[ x = \frac{-8}{-16} \][/tex]
[tex]\[ x = \frac{8}{16} \][/tex]
[tex]\[ x = 0.5 \][/tex]

So, the unique solution is [tex]\( x = 0.5 \)[/tex].

### Step 4: Check the solution.
Substitute [tex]\( x = 0.5 \)[/tex] back into the original equation to verify:

Original equation:
[tex]\[ 2(5 - 3x) = 2(5x + 1) \][/tex]

Substitute [tex]\( x = 0.5 \)[/tex]:
[tex]\[ 2(5 - 3 \cdot 0.5) = 2(5 \cdot 0.5 + 1) \][/tex]

Simplify:
[tex]\[ 2(5 - 1.5) = 2(2.5 + 1) \][/tex]
[tex]\[ 2 \cdot 3.5 = 2 \cdot 3.5 \][/tex]
[tex]\[ 7 = 7 \][/tex]

Both sides are equal, so [tex]\( x = 0.5 \)[/tex] is indeed a solution.

### Conclusion:
The correct choice is:
A. The solution set is [tex]\(\{0.5\}\)[/tex].