A race car is driven by a professional driver at [tex]\(99 \frac{\text{miles}}{\text{hour}}\)[/tex].

What is this speed in [tex]\(\frac{\text{kilometers}}{\text{hour}}\)[/tex] and [tex]\(\frac{\text{kilometers}}{\text{minute}}\)[/tex]?

1 mile [tex]\(= 1.61\)[/tex] kilometers

1 hour [tex]\(= 60\)[/tex] minutes

Express the answers to the correct number of significant figures.

The speed is equivalent to [tex]\(\square\)[/tex] [tex]\(\frac{\text{kilometers}}{\text{hour}}\)[/tex], or [tex]\(\square\)[/tex] [tex]\(\frac{\text{kilometers}}{\text{minute}}\)[/tex].



Answer :

To convert the speed of the race car from miles per hour to both kilometers per hour and kilometers per minute, follow these steps.

Given:
- Speed in miles per hour ([tex]\( \frac{\text {miles}}{\text {hour}} \)[/tex]): [tex]\( 99 \, \frac{\text {miles}}{\text {hour}} \)[/tex]
- Conversion factor from miles to kilometers: [tex]\( 1 \, \text {mile} = 1.61 \, \text {kilometers} \)[/tex]
- Conversion factor from hours to minutes: [tex]\( 1 \, \text {hour} = 60 \, \text {minutes} \)[/tex]

### Step 1: Convert miles per hour to kilometers per hour

To convert the given speed from miles per hour to kilometers per hour, multiply the speed by the conversion factor from miles to kilometers:
[tex]\[ \text {Speed in } \frac{\text {km}}{\text {hour}} = 99 \, \frac{\text {miles}}{\text {hour}} \times 1.61 \, \frac{\text {km}}{\text {mile}} \][/tex]

[tex]\[ \text {Speed in } \frac{\text {km}}{\text {hour}} = 159.39 \, \frac{\text {km}}{\text {hour}} \][/tex]

### Step 2: Convert kilometers per hour to kilometers per minute

To convert the speed from kilometers per hour to kilometers per minute, divide the speed in kilometers per hour by the number of minutes in an hour:
[tex]\[ \text {Speed in } \frac{\text {km}}{\text {minute}} = \frac{159.39 \, \frac{\text {km}}{\text {hour}}}{60 \, \frac{\text {minutes}}{\text {hour}}} \][/tex]

[tex]\[ \text {Speed in } \frac{\text {km}}{\text {minute}} = 2.6565 \, \frac{\text {km}}{\text {minute}} \][/tex]

### Final Answers

The speed is equivalent to:
[tex]\[ 159.39 \, \frac{\text {kilometers}}{\text {hour}} \][/tex]
or
[tex]\[ 2.6565 \, \frac{\text {kilometers}}{\text {minute}} \][/tex]

Therefore:

The speed is equivalent to [tex]\( \boxed{159.39} \, \frac{\text {kilometers}}{\text {hour}} \)[/tex], or [tex]\( \boxed{2.6565} \, \frac{\text {kilometers}}{\text {minute}} \)[/tex].