3. A bullet of mass 0.023 kg moving at a horizontal speed of 80 m/s strikes a block of wood of mass 0.45 kg and instantly comes to rest with respect to the block. The block is suspended from the ceiling by means of thin wires.

a. Calculate the height to which the block rises.
b. Estimate the amount of heat produced.



Answer :

To solve this problem, we need to analyze it using principles of physics such as conservation of momentum, conservation of energy, and mechanics. Here’s a step-by-step explanation:

1. Given Data:
- Mass of the bullet, [tex]\( m_b = 0.023 \, \text{kg} \)[/tex]
- Velocity of the bullet before impact, [tex]\( v_b = 80 \, \text{m/s} \)[/tex]
- Mass of the block, [tex]\( m_{\text{block}} = 0.45 \, \text{kg} \)[/tex]
- Acceleration due to gravity, [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]

2. Initial Momentum:
The initial momentum of the bullet before striking the block:
[tex]\[ p_{\text{bullet}} = m_b \cdot v_b \][/tex]
Plugging in the given values:
[tex]\[ p_{\text{bullet}} = 0.023 \, \text{kg} \cdot 80 \, \text{m/s} = 1.84 \, \text{kg m/s} \][/tex]

3. Final Velocity after Collision:
After the collision, the bullet comes to rest with respect to the block, so they move together. Using conservation of momentum:
[tex]\[ p_{\text{initial}} = p_{\text{final}} \][/tex]
Where:
[tex]\[ p_{\text{final}} = (m_b + m_{\text{block}}) \cdot v_f \][/tex]
Solving for the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \frac{p_{\text{bullet}}}{m_b + m_{\text{block}}} = \frac{1.84 \, \text{kg m/s}}{0.023 \, \text{kg} + 0.45 \, \text{kg}} = \frac{1.84}{0.473} = 3.89 \, \text{m/s} \][/tex]

4. Initial Kinetic Energy:
The initial kinetic energy of the bullet before impact is:
[tex]\[ KE_{\text{bullet}} = \frac{1}{2} m_b v_b^2 \][/tex]
Plugging in the numbers:
[tex]\[ KE_{\text{bullet}} = \frac{1}{2} \cdot 0.023 \, \text{kg} \cdot (80 \, \text{m/s})^2 = \frac{1}{2} \cdot 0.023 \cdot 6400 = 73.6 \, \text{J} \][/tex]

5. Kinetic energy of the combined mass just after the collision:
[tex]\[ KE_{\text{combined}} = \frac{1}{2} (m_b + m_{\text{block}}) v_f^2 \][/tex]
Plugging the values:
[tex]\[ KE_{\text{combined}} = \frac{1}{2} \cdot 0.473 \, \text{kg} \cdot (3.89 \, \text{m/s})^2 = \frac{1}{2} \cdot 0.473 \cdot 15.13 = 3.579 \, \text{J} \][/tex]

6. Height to which the block rises:
Using conservation of energy, the kinetic energy just after the collision is converted into potential energy at the highest point:
[tex]\[ (m_b + m_{\text{block}}) g h = KE_{\text{combined}} \][/tex]
Solving for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{KE_{\text{combined}}}{(m_b + m_{\text{block}}) g} = \frac{3.579 \, \text{J}}{0.473 \, \text{kg} \cdot 9.8 \, \text{m/s}^2} = \frac{3.579}{4.6354} = 0.772 \, \text{m} \][/tex]

7. Amount of Heat Produced:
The heat produced is the difference between the initial kinetic energy of the bullet and the kinetic energy of the combined mass:
[tex]\[ \text{Heat produced} = KE_{\text{bullet}} - KE_{\text{combined}} \][/tex]
Plugging in the numbers:
[tex]\[ \text{Heat produced} = 73.6 \, \text{J} - 3.579 \, \text{J} = 70.021 \, \text{J} \][/tex]

### Summary of Results:
- Height to which the block rises: [tex]\( 0.772 \, \text{m} \)[/tex]
- Amount of heat produced: [tex]\( 70.021 \, \text{J} \)[/tex]

These detailed steps provide a comprehensive understanding of how we reach the numerical results.