What is the condensed expression for [tex]$2 \ln x + \ln 3$[/tex]?

A. [tex]\ln 3x^2[/tex]
B. [tex]x^2 \ln 3[/tex]
C. [tex]\ln \left(x^2 + 3\right)[/tex]
D. [tex]3 \ln x^2[/tex]



Answer :

To find the condensed expression for [tex]\(2 \ln x + \ln 3\)[/tex], we can use properties of logarithms.

1. Power Rule of Logarithms: The expression [tex]\(2 \ln x\)[/tex] can be rewritten using the power rule, which states that [tex]\(a \ln b = \ln b^a\)[/tex]. Thus,
[tex]\[ 2 \ln x = \ln x^2. \][/tex]

2. Sum Rule of Logarithms: Next, we apply the sum rule for logarithms, which states that [tex]\(\ln a + \ln b = \ln (a \cdot b)\)[/tex]. So, we add [tex]\(\ln x^2\)[/tex] and [tex]\(\ln 3\)[/tex]:
[tex]\[ \ln x^2 + \ln 3 = \ln (x^2 \cdot 3). \][/tex]

3. Combine the Logarithms: Combining them, the expression becomes:
[tex]\[ \ln (3 x^2). \][/tex]

Therefore, the condensed expression for [tex]\(2 \ln x + \ln 3\)[/tex] is [tex]\(\ln (3 x^2)\)[/tex].

Answer: [tex]\(\ln (3 x^2)\)[/tex]