If the universal set [tex]$U=\{2,4,6,8,10\}$[/tex] and [tex]$F=\{4,10\}$[/tex], then which set represents [tex][tex]$F^{\prime}$[/tex][/tex]?

A. [tex]\{5,7,9\}[/tex]
B. [tex]\{4,6,8,10\}[/tex]
C. [tex]\{2,6,8\}[/tex]
D. [tex]\{1,3,5,7,9\}[/tex]



Answer :

To determine the complement of the set [tex]\( F \)[/tex] in the universal set [tex]\( U \)[/tex], denoted as [tex]\( F' \)[/tex], follow these steps:

1. Identify the Universal Set [tex]\( U \)[/tex]: [tex]\( U = \{2, 4, 6, 8, 10\} \)[/tex]
2. Identify the Set [tex]\( F \)[/tex]: [tex]\( F = \{4, 10\} \)[/tex]
3. Determine the Complement Set [tex]\( F' \)[/tex]: The complement of [tex]\( F \)[/tex], [tex]\( F' \)[/tex], consists of all elements in the universal set [tex]\( U \)[/tex] that are not in [tex]\( F \)[/tex].

We systematically compare each element of [tex]\( U \)[/tex] to see if it is in [tex]\( F \)[/tex]:
- [tex]\( 2 \)[/tex] is in [tex]\( U \)[/tex] and not in [tex]\( F \)[/tex]; include [tex]\( 2 \)[/tex] in [tex]\( F' \)[/tex]
- [tex]\( 4 \)[/tex] is in [tex]\( U \)[/tex] and is in [tex]\( F \)[/tex]; do not include [tex]\( 4 \)[/tex] in [tex]\( F' \)[/tex]
- [tex]\( 6 \)[/tex] is in [tex]\( U \)[/tex] and not in [tex]\( F \)[/tex]; include [tex]\( 6 \)[/tex] in [tex]\( F' \)[/tex]
- [tex]\( 8 \)[/tex] is in [tex]\( U \)[/tex] and not in [tex]\( F \)[/tex]; include [tex]\( 8 \)[/tex] in [tex]\( F' \)[/tex]
- [tex]\( 10 \)[/tex] is in [tex]\( U \)[/tex] and is in [tex]\( F \)[/tex]; do not include [tex]\( 10 \)[/tex] in [tex]\( F' \)[/tex]

Thus, the set [tex]\( F' \)[/tex], the complement of [tex]\( F \)[/tex] in [tex]\( U \)[/tex], includes [tex]\( 2, 6, \)[/tex] and [tex]\( 8 \)[/tex].

Therefore, the set that represents [tex]\( F' \)[/tex] is:
[tex]\[ \{2, 6, 8\} \][/tex]

Among the provided options, this corresponds to:
[tex]\[ \{2, 6, 8\} \][/tex]

Hence, the correct answer is:
[tex]\[ \{2, 6, 8\} \][/tex]