Which shows the following expression after the negative exponents have been eliminated?

[tex]\[ \frac{m^7 n^3}{m n^{-1}}, \quad m \neq 0, \quad n \neq 0 \][/tex]

A. [tex]\(\frac{m^7 n^3 n}{m}\)[/tex]

B. [tex]\(m^7 n^3 m n\)[/tex]

C. [tex]\(\frac{m^7 n^3}{m(-n)}\)[/tex]

D. [tex]\(\frac{m n}{m^7 n}\)[/tex]



Answer :

Let's simplify the given expression step by step:

Given expression:
[tex]\[ \frac{m^7 n^3}{m n^{-1}} \][/tex]

### Step 1: Eliminate the negative exponent [tex]\( n^{-1} \)[/tex]

Recall that [tex]\( n^{-1} \)[/tex] is the same as [tex]\( \frac{1}{n} \)[/tex]. Therefore, we can rewrite the denominator:
[tex]\[ \frac{m^7 n^3}{m \cdot \frac{1}{n}} = \frac{m^7 n^3}{\frac{m}{n}} \][/tex]

### Step 2: Simplify the fraction

When dividing by a fraction, it's equivalent to multiplying by its reciprocal:
[tex]\[ \frac{m^7 n^3}{\frac{m}{n}} = m^7 n^3 \cdot \frac{n}{m} \][/tex]

### Step 3: Combine and simplify the exponents

Now we combine the terms:
[tex]\[ m^7 n^3 \cdot \frac{n}{m} = m^{7-1} \cdot n^{3+1} = m^6 \cdot n^4 \][/tex]

Thus, the expression simplifies to:
[tex]\[ m^6 n^4 \][/tex]

### Final Answer:

The result shows that after eliminating negative exponents, the given expression simplifies to:
[tex]\[ m^6 n^4 \][/tex]