Answer :
Sure, let's solve for the indicated function values for the function [tex]\( g(x) = 8x + 8 \)[/tex].
a. Finding [tex]\( g(0) \)[/tex]:
To find [tex]\( g(0) \)[/tex], we substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ g(0) = 8(0) + 8 = 8 \][/tex]
So, [tex]\( g(0) = 8 \)[/tex].
b. Finding [tex]\( g(2) \)[/tex]:
To find [tex]\( g(2) \)[/tex], we substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ g(2) = 8(2) + 8 = 16 + 8 = 24 \][/tex]
So, [tex]\( g(2) = 24 \)[/tex].
c. Finding [tex]\( g\left( \frac{7}{8} \right) \)[/tex]:
To find [tex]\( g\left( \frac{7}{8} \right) \)[/tex], we substitute [tex]\( x = \frac{7}{8} \)[/tex] into the function:
[tex]\[ g\left( \frac{7}{8} \right) = 8 \left( \frac{7}{8} \right) + 8 = 7 + 8 = 15 \][/tex]
So, [tex]\( g\left( \frac{7}{8} \right) = 15 \)[/tex].
d. Finding [tex]\( g(9b) \)[/tex]:
To find [tex]\( g(9b) \)[/tex], we substitute [tex]\( x = 9b \)[/tex] into the function:
[tex]\[ g(9b) = 8(9b) + 8 = 72b + 8 \][/tex]
Evaluating this expression further, let's simplify:
[tex]\[ g(9) = 72 + 8 = 80 \][/tex]
So, [tex]\( g(9b) = 80 \)[/tex].
e. Finding [tex]\( g(b+4) \)[/tex]:
To find [tex]\( g(b+4) \)[/tex], we substitute [tex]\( x = b+4 \)[/tex] into the function:
[tex]\[ g(b+4) = 8(b + 4) + 8 = 8b + 32 + 8 = 8b + 40 \][/tex]
Evaluating this expression further, let's simplify:
[tex]\[ g(4) = 32 + 8 = 40 \][/tex]
So, [tex]\( g(b+4) = 40 \)[/tex].
In summary:
a. [tex]\( g(0) = 8 \)[/tex]
b. [tex]\( g(2) = 24 \)[/tex]
c. [tex]\( g\left( \frac{7}{8} \right) = 15 \)[/tex]
d. [tex]\( g(9) = 80 \)[/tex]
e. [tex]\( g(4) = 40 \)[/tex]
a. Finding [tex]\( g(0) \)[/tex]:
To find [tex]\( g(0) \)[/tex], we substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ g(0) = 8(0) + 8 = 8 \][/tex]
So, [tex]\( g(0) = 8 \)[/tex].
b. Finding [tex]\( g(2) \)[/tex]:
To find [tex]\( g(2) \)[/tex], we substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ g(2) = 8(2) + 8 = 16 + 8 = 24 \][/tex]
So, [tex]\( g(2) = 24 \)[/tex].
c. Finding [tex]\( g\left( \frac{7}{8} \right) \)[/tex]:
To find [tex]\( g\left( \frac{7}{8} \right) \)[/tex], we substitute [tex]\( x = \frac{7}{8} \)[/tex] into the function:
[tex]\[ g\left( \frac{7}{8} \right) = 8 \left( \frac{7}{8} \right) + 8 = 7 + 8 = 15 \][/tex]
So, [tex]\( g\left( \frac{7}{8} \right) = 15 \)[/tex].
d. Finding [tex]\( g(9b) \)[/tex]:
To find [tex]\( g(9b) \)[/tex], we substitute [tex]\( x = 9b \)[/tex] into the function:
[tex]\[ g(9b) = 8(9b) + 8 = 72b + 8 \][/tex]
Evaluating this expression further, let's simplify:
[tex]\[ g(9) = 72 + 8 = 80 \][/tex]
So, [tex]\( g(9b) = 80 \)[/tex].
e. Finding [tex]\( g(b+4) \)[/tex]:
To find [tex]\( g(b+4) \)[/tex], we substitute [tex]\( x = b+4 \)[/tex] into the function:
[tex]\[ g(b+4) = 8(b + 4) + 8 = 8b + 32 + 8 = 8b + 40 \][/tex]
Evaluating this expression further, let's simplify:
[tex]\[ g(4) = 32 + 8 = 40 \][/tex]
So, [tex]\( g(b+4) = 40 \)[/tex].
In summary:
a. [tex]\( g(0) = 8 \)[/tex]
b. [tex]\( g(2) = 24 \)[/tex]
c. [tex]\( g\left( \frac{7}{8} \right) = 15 \)[/tex]
d. [tex]\( g(9) = 80 \)[/tex]
e. [tex]\( g(4) = 40 \)[/tex]