What is [tex]$f(-3)$[/tex] for the function [tex]$f(a) = -2a^2 - 5a + 4$[/tex]?

A. [tex][tex]$-29$[/tex][/tex]
B. [tex]$-23$[/tex]
C. 1
D. 37



Answer :

To find the value of [tex]\( f(-3) \)[/tex] for the function [tex]\( f(a) = -2a^2 - 5a + 4 \)[/tex], we will follow these steps:

1. Substitute [tex]\( a = -3 \)[/tex] into the function:
[tex]\[ f(-3) = -2(-3)^2 - 5(-3) + 4 \][/tex]

2. Calculate the value of each term:

- First, compute [tex]\( (-3)^2 \)[/tex]:
[tex]\[ (-3)^2 = 9 \][/tex]

- Next, multiply by [tex]\(-2\)[/tex]:
[tex]\[ -2 \times 9 = -18 \][/tex]

- Then, compute [tex]\( -5 \times (-3) \)[/tex]:
[tex]\[ -5 \times (-3) = 15 \][/tex]

- The constant term remains the same:
[tex]\[ 4 \][/tex]

3. Combine all the terms:
[tex]\[ f(-3) = -18 + 15 + 4 \][/tex]

4. Simplify the expression:
[tex]\[ -18 + 15 = -3 \][/tex]
Then,
[tex]\[ -3 + 4 = 1 \][/tex]

Therefore, [tex]\( f(-3) = 1 \)[/tex].

Hence, the correct answer is [tex]\( 1 \)[/tex].