Answer :

To find the zeros of the function [tex]\( f(a) = a^2 + 8a + 15 \)[/tex], we need to determine the values of [tex]\( a \)[/tex] for which [tex]\( f(a) = 0 \)[/tex]. This means solving the quadratic equation:

[tex]\[ a^2 + 8a + 15 = 0 \][/tex]

Here, the coefficients are [tex]\( a = 1 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 15 \)[/tex].

1. Calculate the Discriminant:

The discriminant [tex]\( \Delta \)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:

[tex]\[ \Delta = b^2 - 4ac \][/tex]

Substituting in our coefficients:

[tex]\[ \Delta = 8^2 - 4 \cdot 1 \cdot 15 = 64 - 60 = 4 \][/tex]

2. Determine the Roots Using the Quadratic Formula:

The quadratic formula for finding the roots of [tex]\( ax^2 + bx + c = 0 \)[/tex] is:

[tex]\[ a = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]

Plugging in our values:

[tex]\[ a = \frac{-8 \pm \sqrt{4}}{2 \cdot 1} = \frac{-8 \pm 2}{2} \][/tex]

3. Calculate the Two Possible Roots:

- For the positive square root:

[tex]\[ a_1 = \frac{-8 + 2}{2} = \frac{-6}{2} = -3 \][/tex]

- For the negative square root:

[tex]\[ a_2 = \frac{-8 - 2}{2} = \frac{-10}{2} = -5 \][/tex]

4. Conclusion:

Therefore, the zeros of the function [tex]\( f(a) = a^2 + 8a + 15 \)[/tex] are [tex]\( a = -3 \)[/tex] and [tex]\( a = -5 \)[/tex].

The roots can be written as:

[tex]\[ a_1 = -3 \quad \text{and} \quad a_2 = -5 \][/tex]