Answer :
Let's analyze the question step-by-step based on the given boiling points:
1. Boiling Point Comparison:
- The boiling point of [tex]\( CHF_2Cl \)[/tex] is [tex]\( -41^{\circ} C \)[/tex].
- The boiling point of [tex]\( CF_2Cl_2 \)[/tex] is [tex]\( -30^{\circ} C \)[/tex].
- Since [tex]\( -41^{\circ} C \)[/tex] is lower than [tex]\( -30^{\circ} C \)[/tex], [tex]\( CHF_2Cl \)[/tex] has a lower boiling point than [tex]\( CF_2Cl_2 \)[/tex].
2. Vapor Pressure Relation:
- A substance with a lower boiling point has a higher vapor pressure at a given temperature.
- Therefore, [tex]\( CHF_2Cl \)[/tex] having a lower boiling point than [tex]\( CF_2Cl_2 \)[/tex] means [tex]\( CHF_2Cl \)[/tex] has a higher vapor pressure than [tex]\( CF_2Cl_2 \)[/tex].
3. Intermolecular Forces:
- Substances with higher vapor pressures have weaker intermolecular forces because their molecules escape the liquid phase more easily.
- Hence, [tex]\( CHF_2Cl \)[/tex] having a higher vapor pressure than [tex]\( CF_2Cl_2 \)[/tex] indicates that [tex]\( CHF_2Cl \)[/tex] has weaker intermolecular forces than [tex]\( CF_2Cl_2 \)[/tex].
The final step-by-step solution to fill in the blanks is:
- [tex]\( CHF_2Cl \)[/tex] has a lower boiling point than [tex]\( CF_2Cl_2 \)[/tex].
- [tex]\( CHF_2Cl \)[/tex] has a higher vapor pressure than [tex]\( CF_2Cl_2 \)[/tex].
- Thus, we can conclude that [tex]\( CHF_2Cl \)[/tex] has weaker intermolecular forces than [tex]\( CF_2Cl_2 \)[/tex].
Therefore, the filled in statements would be:
- [tex]\( CHF_2Cl \)[/tex] has a lower boiling point than [tex]\( CF_2Cl_2 \)[/tex].
- [tex]\( CHF_2Cl \)[/tex] has a higher vapor pressure than [tex]\( CF_2Cl_2 \)[/tex].
- Thus, we can conclude that [tex]\( CHF_2Cl \)[/tex] has weaker intermolecular forces than [tex]\( CF_2Cl_2 \)[/tex].
1. Boiling Point Comparison:
- The boiling point of [tex]\( CHF_2Cl \)[/tex] is [tex]\( -41^{\circ} C \)[/tex].
- The boiling point of [tex]\( CF_2Cl_2 \)[/tex] is [tex]\( -30^{\circ} C \)[/tex].
- Since [tex]\( -41^{\circ} C \)[/tex] is lower than [tex]\( -30^{\circ} C \)[/tex], [tex]\( CHF_2Cl \)[/tex] has a lower boiling point than [tex]\( CF_2Cl_2 \)[/tex].
2. Vapor Pressure Relation:
- A substance with a lower boiling point has a higher vapor pressure at a given temperature.
- Therefore, [tex]\( CHF_2Cl \)[/tex] having a lower boiling point than [tex]\( CF_2Cl_2 \)[/tex] means [tex]\( CHF_2Cl \)[/tex] has a higher vapor pressure than [tex]\( CF_2Cl_2 \)[/tex].
3. Intermolecular Forces:
- Substances with higher vapor pressures have weaker intermolecular forces because their molecules escape the liquid phase more easily.
- Hence, [tex]\( CHF_2Cl \)[/tex] having a higher vapor pressure than [tex]\( CF_2Cl_2 \)[/tex] indicates that [tex]\( CHF_2Cl \)[/tex] has weaker intermolecular forces than [tex]\( CF_2Cl_2 \)[/tex].
The final step-by-step solution to fill in the blanks is:
- [tex]\( CHF_2Cl \)[/tex] has a lower boiling point than [tex]\( CF_2Cl_2 \)[/tex].
- [tex]\( CHF_2Cl \)[/tex] has a higher vapor pressure than [tex]\( CF_2Cl_2 \)[/tex].
- Thus, we can conclude that [tex]\( CHF_2Cl \)[/tex] has weaker intermolecular forces than [tex]\( CF_2Cl_2 \)[/tex].
Therefore, the filled in statements would be:
- [tex]\( CHF_2Cl \)[/tex] has a lower boiling point than [tex]\( CF_2Cl_2 \)[/tex].
- [tex]\( CHF_2Cl \)[/tex] has a higher vapor pressure than [tex]\( CF_2Cl_2 \)[/tex].
- Thus, we can conclude that [tex]\( CHF_2Cl \)[/tex] has weaker intermolecular forces than [tex]\( CF_2Cl_2 \)[/tex].