Answered

Convert the following to Slope-Intercept Form: [tex]4x - 3y = 24[/tex].

A. [tex]y = \frac{4}{3}x - 8[/tex]
B. [tex]y = -\frac{4}{3}x + 8[/tex]
C. [tex]y = \frac{4}{3}x - 24[/tex]
D. [tex]y = -\frac{4}{3}x + 24[/tex]



Answer :

To convert the given equation [tex]\( 4x - 3y = 24 \)[/tex] to slope-intercept form, which is in the form [tex]\( y = mx + b \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ 4x - 3y = 24 \][/tex]

2. Isolate the term involving [tex]\( y \)[/tex] on one side of the equation. To do this, move [tex]\( 4x \)[/tex] to the other side:
[tex]\[ -3y = -4x + 24 \][/tex]

3. Solve for [tex]\( y \)[/tex] by dividing every term by [tex]\(-3\)[/tex] to get [tex]\( y \)[/tex] by itself:
[tex]\[ y = \frac{-4x + 24}{-3} \][/tex]

4. Simplify the division:
[tex]\[ y = \frac{-4}{-3}x + \frac{24}{-3} \][/tex]
Which simplifies to:
[tex]\[ y = \frac{4}{3}x - 8 \][/tex]

Thus, the slope-intercept form of the equation [tex]\( 4x - 3y = 24 \)[/tex] is:
[tex]\[ y = \frac{4}{3}x - 8 \][/tex]

Now, let's identify this form among the given options:
- [tex]\( y = \frac{4}{3}x - 8 \)[/tex]
- [tex]\( y = -\frac{4}{3}x + 8 \)[/tex] (not equivalent)
- [tex]\( y = \frac{4}{3}x - 24 \)[/tex] (wrong constant term)
- [tex]\( y = -\frac{4}{3}x + 24 \)[/tex] (not equivalent)

Therefore, the correct slope-intercept form of the equation [tex]\( 4x - 3y = 24 \)[/tex] is:
[tex]\[ y = \frac{4}{3}x - 8 \][/tex]

This matches the first given option.