Choose the best classification for the quadrilateral with vertices at the following points:

[tex]\[
(-3, 0), (-3, -3), (0, -3), (0, 0)
\][/tex]

Hint: Start by graphing the points.
Distance Formula: [tex]\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\][/tex]

A. Rectangle
B. Square
C. Rhombus
D. Trapezoid



Answer :

To determine the type of quadrilateral given the vertices [tex]\((-3,0)\)[/tex], [tex]\((-3,-3)\)[/tex], [tex]\((0,-3)\)[/tex], and [tex]\((0,0)\)[/tex], let's go through the steps.

1. Graph the Points:
- Plot the points on a coordinate plane.
- Point [tex]\(A = (-3, 0)\)[/tex]
- Point [tex]\(B = (-3, -3)\)[/tex]
- Point [tex]\(C = (0, -3)\)[/tex]
- Point [tex]\(D = (0, 0)\)[/tex]

2. Calculate the Lengths of All Sides Using the Distance Formula:
- The distance formula is [tex]\(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)[/tex].

- Distance [tex]\(AB\)[/tex]:
[tex]\(A (-3, 0)\)[/tex] to [tex]\(B (-3, -3)\)[/tex]
[tex]\[ AB = \sqrt{((-3) - (-3))^2 + ((-3) - 0)^2} = \sqrt{0 + 9} = 3 \][/tex]

- Distance [tex]\(BC\)[/tex]:
[tex]\(B (-3, -3)\)[/tex] to [tex]\(C (0, -3)\)[/tex]
[tex]\[ BC = \sqrt{(0 - (-3))^2 + ((-3) - (-3))^2} = \sqrt{9 + 0} = 3 \][/tex]

- Distance [tex]\(CD\)[/tex]:
[tex]\(C (0, -3)\)[/tex] to [tex]\(D (0, 0)\)[/tex]
[tex]\[ CD = \sqrt{(0 - 0)^2 + (0 - (-3))^2} = \sqrt{0 + 9} = 3 \][/tex]

- Distance [tex]\(DA\)[/tex]:
[tex]\(D (0, 0)\)[/tex] to [tex]\(A (-3, 0)\)[/tex]
[tex]\[ DA = \sqrt{(0 - (-3))^2 + (0 - 0)^2} = \sqrt{9 + 0} = 3 \][/tex]

3. Calculate the Lengths of the Diagonals:
- Diagonal [tex]\(AC\)[/tex]:
[tex]\(A (-3, 0)\)[/tex] to [tex]\(C (0, -3)\)[/tex]
[tex]\[ AC = \sqrt{(0 - (-3))^2 + ((-3) - 0)^2} = \sqrt{9 + 9} = 3\sqrt{2} \][/tex]

- Diagonal [tex]\(BD\)[/tex]:
[tex]\(B (-3, -3)\)[/tex] to [tex]\(D (0, 0)\)[/tex]
[tex]\[ BD = \sqrt{(0 - (-3))^2 + (0 - (-3))^2} = \sqrt{9 + 9} = 3\sqrt{2} \][/tex]

4. Analyze the Characteristics:
- All four sides are equal: [tex]\(AB = BC = CD = DA = 3\)[/tex]
- Both diagonals are equal: [tex]\(AC = BD = 3\sqrt{2}\)[/tex]

Given these properties, the quadrilateral has all four sides equal and the diagonals are equal as well, which are the defining characteristics of a square.

Thus, the best selection for the quadrilateral with vertices at the given points is:
Square.