Graph the given function by making a table of coordinates.

[tex]\[ f(x)=2^x \][/tex]

Complete the table of coordinates.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$x$ & -2 & -1 & 0 & 1 & 2 \\
\hline
$y$ & \square & \square & \square & \square & \square \\
\hline
\end{tabular}
\][/tex]

(Type integers or fractions. Simplify your answers.)



Answer :

To graph the given function [tex]\( f(x) = 2^x \)[/tex], we need to calculate the values of [tex]\( f(x) \)[/tex] for the specified [tex]\( x \)[/tex]-values. Let's fill in the table of coordinates.

Given [tex]\( f(x) = 2^x \)[/tex]:

1. When [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \][/tex]

2. When [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 2^{-1} = \frac{1}{2^1} = \frac{1}{2} \][/tex]

3. When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 2^0 = 1 \][/tex]

4. When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2^1 = 2 \][/tex]

5. When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 2^2 = 4 \][/tex]

Now, let's complete the table with these values:

\begin{tabular}{|c|c|c|c|c|c|}
\hline [tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 \\
\hline [tex]$y$[/tex] & [tex]\(\frac{1}{4}\)[/tex] & [tex]\(\frac{1}{2}\)[/tex] & 1 & 2 & 4 \\
\hline
\end{tabular}