In formally proving that [tex]\lim _{x \rightarrow 2}\left(x^3-2 x^2+4 x\right)=8[/tex], let [tex]\varepsilon\ \textgreater \ 0[/tex] be arbitrary. Choose [tex]\delta=\min \left(\frac{\varepsilon}{m}, 1\right)[/tex]. Determine [tex]m[/tex].

[tex]m = [/tex]



Answer :

To formally prove that [tex]\(\lim_{x \rightarrow 2} \left(x^3 - 2x^2 + 4x\right) = 8\)[/tex], we need to show that for any [tex]\(\varepsilon > 0\)[/tex], there exists a [tex]\(\delta > 0\)[/tex] such that whenever [tex]\(0 < |x - 2| < \delta\)[/tex], it follows that [tex]\(|(x^3 - 2x^2 + 4x) - 8| < \varepsilon\)[/tex].

Firstly, define the function:
[tex]\[ f(x) = x^3 - 2x^2 + 4x \][/tex]

We are interested in the behavior of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 2. Let's calculate:
[tex]\[ f(2) = 2^3 - 2 \cdot 2^2 + 4 \cdot 2 = 8 - 8 + 8 = 8 \][/tex]

Now we consider:
[tex]\[ |f(x) - 8| = |x^3 - 2x^2 + 4x - 8| \][/tex]

We need this expression to be less than [tex]\(\varepsilon\)[/tex] for [tex]\(0 < |x - 2| < \delta\)[/tex].

Simplify the expression [tex]\(|x^3 - 2x^2 + 4x - 8|\)[/tex]:
[tex]\[ f(x) - 8 = x^3 - 2x^2 + 4x - 8 \][/tex]

Next, let's factor [tex]\((x - 2)\)[/tex] out of the polynomial:
[tex]\[ x^3 - 2x^2 + 4x - 8 = (x - 2)(x^2 + x + 4) \][/tex]

So we have:
[tex]\[ |f(x) - 8| = |(x - 2)(x^2 + x + 4)| \][/tex]

We need to find an [tex]\(m\)[/tex] such that:
[tex]\[ |(x - 2)(x^2 + x + 4)| < m| x - 2| \][/tex]

This simplifies to ensuring:
[tex]\[ |x^2 + x + 4| < m \][/tex]

We need to bound [tex]\(x^2 + x + 4\)[/tex] near [tex]\(x = 2\)[/tex]. Note that as [tex]\(x \to 2\)[/tex],
[tex]\[ x^2 + x + 4 \to 2^2 + 2 + 4 = 4 + 2 + 4 = 10 \][/tex]

Hence, we need to find [tex]\(m\)[/tex] such that:
[tex]\[ |x^2 + x + 4| \leq 10 \text{ within the chosen } \delta \text{ neighborhood } \][/tex]

Therefore, we choose:
[tex]\( m = 10 \)[/tex]

Finally, to ensure that our [tex]\(\delta\)[/tex] works correctly, we take:
[tex]\[ \delta = \min \left( \frac{\varepsilon}{m}, 1 \right) = \min \left( \frac{\varepsilon}{10}, 1 \right) \][/tex]

Thus, the value of [tex]\(m\)[/tex] ensuring the condition for our δ-ε proof is:
[tex]\[ m = 10 \][/tex]