\begin{tabular}{|c|c|c|c|}
\hline
1.67248 & \begin{tabular}{l}
Correcto: Porque la expresión \\
numérica se representó como el \\
valor de un número significativo \\
comprendido entre 1 y 10.
\end{tabular} & 16.7248 & \begin{tabular}{l}
Incorrecto: Porque la expresión \\
numérica no se representó como \\
el valor de un número significativo \\
comprendido entre 1 y 10.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline
Paso & Justificación & Paso & Justificación \\
\hline
Paso 2 & [tex]$1.67248 \times 10^{-27}$[/tex] & & \\
\hline
Paso 3 & Justificación & & \\
\hline
\end{tabular}



Answer :

Certainly! Let's go through the steps to understand the numerical representations and their justifications.

### Step-by-Step Solution

#### Step 1: Identification of Correct and Incorrect Numerical Representations

In Step 1, we are assessing whether the numerical values presented are correctly represented as significant figures between 1 and 10.

- Value 1: 1.67248

- Justification: This value is indeed correct because it falls between 1 and 10, which is the requirement for representing numbers in scientific notation or when dealing with significant figures. Here is the complete reasoning provided:
> "Correcto; Porque la expresión numérica se represento como el valor de un número significativo comprendido entre 1 y 10."

- Value 2: 16.7248

- Justification: This value is incorrect because it does not meet the criteria of being a significant number between 1 and 10. Specifically, 16.7248 is greater than 10, which disqualifies it from being correctly formed in this context. Here is the explanation provided:
> "Incorrecto: Porque la expresión numérica no se represento como el valor de un número significativo comprendido entre 1 y 10."

#### Step 2: Numerical Value in Scientific Notation

Next, we are given a numerical value in scientific notation:

- Value: [tex]\(1.67248 \times 10^{-27}\)[/tex]

This value correctly represents the number [tex]\(1.67248\)[/tex] scaled by a factor of [tex]\(10^{-27}\)[/tex]. Scientific notation ensures that the significant figure remains between 1 and 10, hence confirming the correctness of this representation.

#### Summary of Values and Justifications

Here is a summary of the values and their justifications:

- Correct Representation:
- Value: 1.67248
- Justification: "Correcto; Porque la expresión numérica se represento como el valor de un número significativo comprendido entre 1 y 10."

- Incorrect Representation:
- Value: 16.7248
- Justification: "Incorrecto: Porque la expresión numérica no se represento como el valor de un número significativo comprendido entre 1 y 10."

- Scientific Notation:
- Value: [tex]\(1.67248 \times 10^{-27}\)[/tex]

By adhering to these principles, we ensure the clarity and correctness of numerical representations in both common and scientific notation forms.