Answered

Select the two values of [tex]x[/tex] that are roots of this equation.

[tex]\[ x^2 + 3x - 3 = 0 \][/tex]

A. [tex]\[ x = \frac{-3 + \sqrt{3}}{2} \][/tex]

B. [tex]\[ x = \frac{-3 - \sqrt{21}}{2} \][/tex]

C. [tex]\[ x = \frac{-3 - \sqrt{3}}{2} \][/tex]

D. [tex]\[ x = \frac{-3 + \sqrt{21}}{2} \][/tex]



Answer :

To solve the equation [tex]\( x^2 + 3x - 3 = 0 \)[/tex], we can use the quadratic formula which is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 3 \)[/tex], and [tex]\( c = -3 \)[/tex].

1. Calculate the discriminant:

[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]

[tex]\[ = 3^2 - 4 \times 1 \times (-3) \][/tex]

[tex]\[ = 9 + 12 \][/tex]

[tex]\[ = 21 \][/tex]

2. Find the roots using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{\text{Discriminant}}}{2a} \][/tex]

[tex]\[ = \frac{-3 \pm \sqrt{21}}{2 \times 1} \][/tex]

[tex]\[ = \frac{-3 \pm \sqrt{21}}{2} \][/tex]

Thus, the two roots of the equation [tex]\( x^2 + 3x - 3 = 0 \)[/tex] are:

[tex]\[ x = \frac{-3 + \sqrt{21}}{2} \][/tex]

[tex]\[ x = \frac{-3 - \sqrt{21}}{2} \][/tex]

Therefore, the correct answers are:

D. [tex]\( x = \frac{-3 + \sqrt{21}}{2} \)[/tex]

B. [tex]\( x = \frac{-3 - \sqrt{21}}{2} \)[/tex]