The table of values below represents an exponential function. Write an exponential equation that models the data.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & 24 \\
\hline
-1 & 16.8 \\
\hline
0 & 11.76 \\
\hline
1 & 8.232 \\
\hline
2 & 5.7624 \\
\hline
\end{tabular}

a. [tex]$y=11.76(1.3)^x$[/tex]
b. [tex]$y=24(0.7)^x$[/tex]
c. [tex]$y=11.76(0.7)^x$[/tex]
d. [tex]$y=16.8(1.7)^x$[/tex]

Please select the best answer from the choices provided:

A
B
C
D



Answer :

To determine the exponential equation that models the given data, we start by understanding the nature of exponential functions. An exponential function can generally be written in the form:

[tex]\[ y = a \cdot b^x \][/tex]

Where:
- [tex]\(a\)[/tex] is the initial value (the [tex]\(y\)[/tex]-intercept when [tex]\(x=0\)[/tex]).
- [tex]\(b\)[/tex] is the base of the exponential (the common ratio between successive [tex]\(y\)[/tex]-values).

Given the data in the table:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & 24 \\ \hline -1 & 16.8 \\ \hline 0 & 11.76 \\ \hline 1 & 8.232 \\ \hline 2 & 5.7624 \\ \hline \end{tabular} \][/tex]

First, identify the value of [tex]\(a\)[/tex] which is the [tex]\(y\)[/tex]-value when [tex]\(x = 0\)[/tex]. From the table, when [tex]\(x = 0\)[/tex], [tex]\(y = 11.76\)[/tex], thus:
[tex]\[ a = 11.76 \][/tex]

Next, we determine the base [tex]\(b\)[/tex] of the exponential function by finding the ratio of successive [tex]\(y\)[/tex]-values:

[tex]\[ b \approx \frac{y_{i+1}}{y_i} \][/tex]

For instance:
[tex]\[ \frac{16.8}{24} = 0.7, \quad \frac{11.76}{16.8} = 0.7, \quad \frac{8.232}{11.76} = 0.7, \quad \frac{5.7624}{8.232} = 0.7 \][/tex]

Observing these ratios, we see that the common ratio [tex]\(b\)[/tex] between successive [tex]\(y\)[/tex]-values is [tex]\(0.7\)[/tex].

Therefore, we can write the exponential equation that models the data as:
[tex]\[ y = 11.76 \cdot (0.7)^x \][/tex]

Comparing this equation with the provided answer choices:
a. [tex]\(y = 11.76(1.3)^x\)[/tex]
c. [tex]\(y = 11.76(0.7)^x\)[/tex]
b. [tex]\(y = 24(0.7)^x\)[/tex]
d. [tex]\(y = 16.8(1.7)^x\)[/tex]

The equation [tex]\(y = 11.76(0.7)^x\)[/tex] matches our derived equation.

Thus, the best answer to the question is:
C