Select the correct answer.

What is the equation of the line that goes through [tex]$(-3,-1)$[/tex] and [tex]$(3,3)$[/tex]?

A. [tex]$3x + 2y = 15$[/tex]

B. [tex]$3y + 2x = 15$[/tex]

C. [tex]$3x - 2y = 3$[/tex]

D. [tex]$2x - 3y = -3$[/tex]



Answer :

To find the equation of the line that passes through the points [tex]\((-3, -1)\)[/tex] and [tex]\((3, 3)\)[/tex], we can follow these steps:

1. Calculate the Slope of the Line ([tex]\(m\)[/tex]):
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points [tex]\((-3, -1)\)[/tex] and [tex]\((3, 3)\)[/tex], we get:
[tex]\[ m = \frac{3 - (-1)}{3 - (-3)} = \frac{3 + 1}{3 + 3} = \frac{4}{6} = \frac{2}{3} \][/tex]

2. Form the Equation in Point-Slope Form:
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting [tex]\(m = \frac{2}{3}\)[/tex], [tex]\(x_1 = -3\)[/tex], and [tex]\(y_1 = -1\)[/tex]:
[tex]\[ y - (-1) = \frac{2}{3}(x - (-3)) \][/tex]
Simplify:
[tex]\[ y + 1 = \frac{2}{3}(x + 3) \][/tex]

3. Convert to Slope-Intercept Form ([tex]\(y = mx + b\)[/tex]):
Distribute [tex]\(\frac{2}{3}\)[/tex] and simplify:
[tex]\[ y + 1 = \frac{2}{3}x + \frac{2}{3} \cdot 3 \][/tex]
[tex]\[ y + 1 = \frac{2}{3}x + 2 \][/tex]
Subtract 1 from both sides:
[tex]\[ y = \frac{2}{3}x + 1 \][/tex]

4. Convert to Standard Form [tex]\(Ax + By = C\)[/tex]:
Multiply all terms by 3 to eliminate the fraction:
[tex]\[ 3y = 2x + 3 \][/tex]
Rearrange to get the standard form:
[tex]\[ 2x - 3y = -3 \][/tex]

So, the equation of the line that goes through [tex]\((-3, -1)\)[/tex] and [tex]\((3, 3)\)[/tex] is:

[tex]\[2x - 3y = -3\][/tex]

Therefore, the correct option is:

D. [tex]\(2x - 3y = -3\)[/tex]