Answer :
To determine how many moles of water could be formed from 3.50 moles of oxygen using the given chemical equation:
[tex]\[ \mathrm{C_5H_{12} + 8 \, O_2 \rightarrow 5 \, CO_2 + 6 \, H_2O} \][/tex]
we need to use the stoichiometric relationships from the balanced equation. The balanced equation states that 8 moles of [tex]\( \mathrm{O_2} \)[/tex] produce 6 moles of [tex]\( \mathrm{H_2O} \)[/tex].
Let's convert the given amount of [tex]\( \mathrm{O_2} \)[/tex] to moles of [tex]\( \mathrm{H_2O} \)[/tex]:
Given moles of [tex]\( \mathrm{O_2} \)[/tex] = 3.50 moles
Using the ratio from the balanced equation:
[tex]\[ \text{Moles of } \mathrm{H_2O} = \text{Moles of } \mathrm{O_2} \times \frac{6 \text{ moles } \mathrm{H_2O}}{8 \text{ moles } \mathrm{O_2}} \][/tex]
So,
[tex]\[ 3.50 \text{ moles } \mathrm{O_2} \times \frac{6 \text{ moles } \mathrm{H_2O}}{8 \text{ moles } \mathrm{O_2}} \][/tex]
Upon calculating this, we find:
[tex]\[ 3.50 \text{ moles } \mathrm{O_2} \times 0.75 = 2.625 \text{ moles } \mathrm{H_2O} \][/tex]
Thus, 3.50 moles of [tex]\( \mathrm{O_2} \)[/tex] would produce 2.625 moles of [tex]\( \mathrm{H_2O} \)[/tex].
Based on this calculation, the correct conversion from the given options is:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{6 \text{ moles } H_2O }{8 \text{ moles } O_2} \][/tex]
This step-by-step solution shows that the second option matches the proper conversion to determine how many moles of water would be formed.
[tex]\[ \mathrm{C_5H_{12} + 8 \, O_2 \rightarrow 5 \, CO_2 + 6 \, H_2O} \][/tex]
we need to use the stoichiometric relationships from the balanced equation. The balanced equation states that 8 moles of [tex]\( \mathrm{O_2} \)[/tex] produce 6 moles of [tex]\( \mathrm{H_2O} \)[/tex].
Let's convert the given amount of [tex]\( \mathrm{O_2} \)[/tex] to moles of [tex]\( \mathrm{H_2O} \)[/tex]:
Given moles of [tex]\( \mathrm{O_2} \)[/tex] = 3.50 moles
Using the ratio from the balanced equation:
[tex]\[ \text{Moles of } \mathrm{H_2O} = \text{Moles of } \mathrm{O_2} \times \frac{6 \text{ moles } \mathrm{H_2O}}{8 \text{ moles } \mathrm{O_2}} \][/tex]
So,
[tex]\[ 3.50 \text{ moles } \mathrm{O_2} \times \frac{6 \text{ moles } \mathrm{H_2O}}{8 \text{ moles } \mathrm{O_2}} \][/tex]
Upon calculating this, we find:
[tex]\[ 3.50 \text{ moles } \mathrm{O_2} \times 0.75 = 2.625 \text{ moles } \mathrm{H_2O} \][/tex]
Thus, 3.50 moles of [tex]\( \mathrm{O_2} \)[/tex] would produce 2.625 moles of [tex]\( \mathrm{H_2O} \)[/tex].
Based on this calculation, the correct conversion from the given options is:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{6 \text{ moles } H_2O }{8 \text{ moles } O_2} \][/tex]
This step-by-step solution shows that the second option matches the proper conversion to determine how many moles of water would be formed.