Answer :

Let's solve the expression step-by-step:

1. Start by simplifying the innermost parentheses:
[tex]\[ 8 - 6 - 7 + 1 \][/tex]
Calculate:
[tex]\[ 8 - 6 = 2 \][/tex]
[tex]\[ 2 - 7 = -5 \][/tex]
[tex]\[ -5 + 1 = -4 \][/tex]
So, [tex]\((8 - 6 - 7 + 1)\)[/tex] simplifies to [tex]\(-4\)[/tex].

2. Next, simplify the expression within the brackets:
[tex]\[ -5 + (-4) \][/tex]
Calculate:
[tex]\[ -5 + (-4) = -9 \][/tex]
So, [tex]\([-5 + (-4)]\)[/tex] simplifies to [tex]\(-9\)[/tex].

3. Now simplify the expression outside the brackets:
[tex]\[ -10 - [-(-9)] \][/tex]
Note: [tex]\(-(-9)\)[/tex] becomes [tex]\(9\)[/tex]. So, the expression is:
[tex]\[ -10 - 9 \][/tex]
Calculate:
[tex]\[ -10 - 9 = -19 \][/tex]

4. Simplify the remaining part of the expression:
[tex]\[ (-73 - 8) \][/tex]
Calculate:
[tex]\[ -73 - 8 = -81 \][/tex]

5. Combine both parts of the simplified expression:
[tex]\[ -19 + (-81) \][/tex]
Calculate:
[tex]\[ -19 + (-81) = -100 \][/tex]

Therefore, the simplified value of the expression is [tex]\(\boxed{-100}\)[/tex].