xand1r
Answered

What is the domain and range of the function [tex]f(x)=2(5)^x+3[/tex]?

Select two answer choices: one for the domain and one for the range.

A. Domain: [tex](3, \infty)[/tex]

B. Range: [tex](3, \infty)[/tex]

C. Range: [tex](-\infty, \infty)[/tex]

D. Domain: [tex](-\infty, \infty)[/tex]

E. Range: [tex](-\infty, 3)[/tex]



Answer :

To determine the domain and range of the function [tex]\( f(x) = 2 \cdot 5^x + 3 \)[/tex], let’s break down the solution step by step.

### Domain

The domain of a function is the set of all possible input values (x-values) that the function can accept.

1. Examine the function [tex]\( f(x) = 2 \cdot 5^x + 3 \)[/tex].
2. The term [tex]\( 5^x \)[/tex] represents an exponential function, which is defined for all real numbers [tex]\( x \)[/tex].
3. There are no restrictions (such as denominators that could be zero or square roots of negative numbers) in this particular function that would limit the values of [tex]\( x \)[/tex].

Therefore, the domain of [tex]\( f(x) = 2 \cdot 5^x + 3 \)[/tex] is all real numbers:
[tex]\[ \text{Domain: } (-\infty, \infty) \][/tex]

### Range

The range of a function is the set of all possible output values (y-values) that the function can produce.

1. Again, consider the function [tex]\( f(x) = 2 \cdot 5^x + 3 \)[/tex].
2. The term [tex]\( 5^x \)[/tex] is an exponential function that is always positive and grows rapidly as [tex]\( x \)[/tex] increases.
3. The smallest value [tex]\( 5^x \)[/tex] can take is just above 0 as [tex]\( x \)[/tex] approaches negative infinity.
4. When multiplied by 2, [tex]\( 2 \cdot 5^x \)[/tex] will still be slightly above 0 and will get much larger as [tex]\( x \)[/tex] increases.
5. Adding 3 to [tex]\( 2 \cdot 5^x \)[/tex] shifts the entire function upwards by 3 units.
6. This means the smallest value [tex]\( f(x) \)[/tex] can take is slightly above 3 (when [tex]\( x \)[/tex] approaches negative infinity), and it increases without bound as [tex]\( x \)[/tex] increases.

Therefore, the range of [tex]\( f(x) = 2 \cdot 5^x + 3 \)[/tex] is:
[tex]\[ \text{Range: } (3, \infty) \][/tex]

From the given choices:
- The correct domain is [tex]\( \text{Domain: } (-\infty, \infty) \)[/tex]
- The correct range is [tex]\( \text{Range: } (3, \infty) \)[/tex]

So the correct answers are:
- Domain: [tex]\((- \infty, \infty)\)[/tex]
- Range: [tex]\((3, \infty)\)[/tex]