You are given the function [tex]f(x) = 4x - 5[/tex] and asked to evaluate [tex]f(-1)[/tex].

Choose the statement below that best describes the procedure to find [tex]f(-1)[/tex]:

A. Replace each [tex]x[/tex] in the polynomial with -1 and find the resulting function value.

B. Multiply the polynomial by -1.

C. Replace [tex]f(x)[/tex] with -1 and solve to find the resulting [tex]x[/tex]-value.

D. Replace each [tex]x[/tex] in the polynomial with 1 and find the resulting function value.



Answer :

To solve for [tex]\( f(-1) \)[/tex] given the function [tex]\( f(x) = 4x - 5 \)[/tex], we need to replace each [tex]\( x \)[/tex] in the function with [tex]\(-1\)[/tex] and find the resulting function value.

Here's the detailed step-by-step procedure:

1. Start with the given function:
[tex]\[ f(x) = 4x - 5 \][/tex]

2. To evaluate [tex]\( f(-1) \)[/tex], substitute [tex]\(-1\)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ f(-1) = 4(-1) - 5 \][/tex]

3. Perform the multiplication:
[tex]\[ 4 \times (-1) = -4 \][/tex]

4. Substitute the result back into the expression:
[tex]\[ f(-1) = -4 - 5 \][/tex]

5. Perform the subtraction:
[tex]\[ -4 - 5 = -9 \][/tex]

So [tex]\( f(-1) \)[/tex] evaluates to [tex]\(-9\)[/tex].

The statement that best describes the procedure to find [tex]\( f(-1) \)[/tex] is:
- Replace each [tex]\( x \)[/tex] in the polynomial with [tex]\(-1\)[/tex] and find the resulting function value.