The ordered pairs in the table below represent a linear function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
6 & 2 \\
\hline
9 & 8 \\
\hline
\end{tabular}

What is the slope of the function?

A. [tex]$\frac{1}{4}$[/tex]
B. [tex]$\frac{1}{2}$[/tex]
C. 2
D. 4



Answer :

To determine the slope of the linear function represented by the ordered pairs [tex]\((6, 2)\)[/tex] and [tex]\((9, 8)\)[/tex], you should follow these steps:

1. Recall the formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

2. Substitute the given points into the formula. Here, [tex]\((x_1, y_1) = (6, 2)\)[/tex] and [tex]\((x_2, y_2) = (9, 8)\)[/tex].
[tex]\[ m = \frac{8 - 2}{9 - 6} \][/tex]

3. Calculate the difference in the [tex]\(y\)[/tex]-coordinates ([tex]\(y_2 - y_1\)[/tex]):
[tex]\[ 8 - 2 = 6 \][/tex]

4. Calculate the difference in the [tex]\(x\)[/tex]-coordinates ([tex]\(x_2 - x_1\)[/tex]):
[tex]\[ 9 - 6 = 3 \][/tex]

5. Divide the difference in the [tex]\(y\)[/tex]-coordinates by the difference in the [tex]\(x\)[/tex]-coordinates:
[tex]\[ m = \frac{6}{3} = 2 \][/tex]

Therefore, the slope of the function is [tex]\(2\)[/tex].

So, the answer is [tex]\(2\)[/tex].