Find the equivalent multiplication expression.

[tex]\[ \frac{7}{8} \div \frac{5}{6} \][/tex]

A. [tex]\(\frac{7}{8} \cdot \frac{6}{5}\)[/tex]

B. [tex]\(\frac{8}{7} \cdot \frac{6}{5}\)[/tex]

C. [tex]\(\frac{7}{8} \cdot \frac{5}{6}\)[/tex]

D. [tex]\(\frac{8}{7} \cdot \frac{5}{6}\)[/tex]



Answer :

Sure, let's go through the process step-by-step to find the correct equivalent multiplication expression.

We are given the division of two fractions:
[tex]\[ \frac{7}{8} \div \frac{5}{6} \][/tex]

In general, dividing by a fraction is the same as multiplying by its reciprocal. Therefore, to convert the division problem into a multiplication problem, we need to take the reciprocal of the second fraction ([tex]\(\frac{5}{6}\)[/tex]).

The reciprocal of [tex]\(\frac{5}{6}\)[/tex] is:
[tex]\[ \frac{6}{5} \][/tex]

Now, replace the division with multiplication by the reciprocal:
[tex]\[ \frac{7}{8} \div \frac{5}{6} \implies \frac{7}{8} \cdot \frac{6}{5} \][/tex]

So, the equivalent multiplication expression is:
[tex]\[ \frac{7}{8} \cdot \frac{6}{5} \][/tex]

Let's validate this by checking the options provided:
1. [tex]\( \frac{7}{8} \cdot \frac{6}{5} \)[/tex]
2. [tex]\( \frac{8}{7} \cdot \frac{6}{5} \)[/tex]
3. [tex]\( \frac{7}{8} \cdot \frac{5}{6} \)[/tex]
4. [tex]\( \frac{8}{7} \cdot \frac{5}{6} \)[/tex]

The correct equivalent multiplication expression is:
[tex]\[ \frac{7}{8} \cdot \frac{6}{5} \][/tex]
Which corresponds to the first option in the list.

So, the answer is:
[tex]\[ \boxed{\frac{7}{8} \cdot \frac{6}{5}} \][/tex]