Sure, let's go through the process of arranging the given fractions in descending order step by step.
We have the fractions [tex]\(\frac{5}{6}\)[/tex], [tex]\(\frac{2}{3}\)[/tex], [tex]\(\frac{2}{4}\)[/tex], and [tex]\(\frac{1}{2}\)[/tex].
First, let's convert all fractions to their decimal forms to easily compare them:
[tex]\[
\frac{5}{6} \approx 0.8333
\][/tex]
[tex]\[
\frac{2}{3} \approx 0.6667
\][/tex]
[tex]\[
\frac{2}{4} = 0.5
\][/tex]
[tex]\[
\frac{1}{2} = 0.5
\][/tex]
Now that we have the decimal equivalents, we can compare them directly. We see that:
[tex]\[
0.8333 > 0.6667 > 0.5 = 0.5
\][/tex]
Arranging these values in descending order, we get:
[tex]\[
0.8333, 0.6667, 0.5, 0.5
\][/tex]
Therefore, the fractions in descending order are:
[tex]\[
\frac{5}{6}, \frac{2}{3}, \frac{2}{4}, \frac{1}{2}
\][/tex]
So the final ordered list is:
[tex]\[
0.8333, 0.6667, 0.5, 0.5
\][/tex]