Select the correct answer from each drop-down menu.
Points [tex]\( A, B, \)[/tex] and [tex]\( C \)[/tex] form a triangle. Complete the statements to prove that the sum of the interior angles of [tex]\(\triangle ABC\)[/tex] is [tex]\(180^{\circ}\)[/tex].
[tex]\[
\begin{array}{|l|l|}
\hline
\text{Statement} & \text{Reason} \\
\hline
\text{Points } A, B, \text{ and } C \text{ form a triangle.} & \text{given} \\
\hline
\text{Let } \overline{DE} \text{ be a line passing through } B \text{ and parallel to } \overline{AC} & \text{definition of parallel lines} \\
\hline
\angle 3 \cong \angle 5 \text{ and } \angle 1 \cong \angle 4 & \\
\hline
m \angle 1 = m \angle 4 \text{ and } m \angle 3 = m \angle 5 & \\
\hline
m \angle 4 + m \angle 2 + m \angle 5 = 180^{\circ} & \text{angle addition and definition of a straight line} \\
\hline
m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ} & \text{substitution} \\
\hline
\end{array}
\][/tex]