Evaluate the piecewise function at the given values of the independent variable.

[tex]
f(x) = \left\{
\begin{array}{ll}
4x + 4 & \text{if } x \ \textless \ 0 \\
3x + 6 & \text{if } x \geq 0
\end{array}
\right.
[/tex]

(a) [tex]f(-4)[/tex] = [tex]\square[/tex]

(b) [tex]f(0)[/tex] = [tex]\square[/tex]

(c) [tex]f(1)[/tex] = [tex]\square[/tex]



Answer :

To evaluate the piecewise function [tex]\( f(x) \)[/tex] at the given values, we need to follow the definition of [tex]\( f(x) \)[/tex] and substitute each value into the appropriate expression. The piecewise function is defined as:

[tex]\[ f(x) = \left\{ \begin{array}{ll} 4x + 4 & \text{if } x < 0 \\ 3x + 6 & \text{if } x \geq 0 \end{array} \right. \][/tex]

Let's evaluate the function at the specified values:

(a) [tex]\( f(-4) \)[/tex]

Since [tex]\(-4 < 0\)[/tex], we use the expression [tex]\( f(x) = 4x + 4 \)[/tex]:

[tex]\[ f(-4) = 4(-4) + 4 = -16 + 4 = -12 \][/tex]

Therefore, [tex]\( f(-4) = -12 \)[/tex].

(b) [tex]\( f(0) \)[/tex]

Since [tex]\(0 \geq 0\)[/tex], we use the expression [tex]\( f(x) = 3x + 6 \)[/tex]:

[tex]\[ f(0) = 3(0) + 6 = 0 + 6 = 6 \][/tex]

Therefore, [tex]\( f(0) = 6 \)[/tex].

(c) [tex]\( f(1) \)[/tex]

Since [tex]\(1 \geq 0\)[/tex], we use the expression [tex]\( f(x) = 3x + 6 \)[/tex]:

[tex]\[ f(1) = 3(1) + 6 = 3 + 6 = 9 \][/tex]

Therefore, [tex]\( f(1) = 9 \)[/tex].

So the values of the function [tex]\( f(x) \)[/tex] at the given points are:

(a) [tex]\( f(-4) = -12 \)[/tex]

(b) [tex]\( f(0) = 6 \)[/tex]

(c) [tex]\( f(1) = 9 \)[/tex]