What is the equation of the circle with center [tex]\((0,1)\)[/tex] and a radius of 10?

A. [tex]\( x^2 + (y-1)^2 = 100 \)[/tex]

B. [tex]\((x-1)^2 + y^2 = 100\)[/tex]

C. [tex]\(x^2 + (y+1)^2 = 100\)[/tex]



Answer :

To find the equation of a circle, we need the center [tex]\((h, k)\)[/tex] and the radius [tex]\(r\)[/tex]. The standard form of the equation of a circle is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

Given:
- The center of the circle [tex]\((h, k)\)[/tex] is [tex]\((0, 1)\)[/tex].
- The radius [tex]\(r\)[/tex] is 10.

We can substitute the given center and radius into the standard form equation.

1. The center is [tex]\((h, k) = (0, 1)\)[/tex], so [tex]\(h = 0\)[/tex] and [tex]\(k = 1\)[/tex].
2. The radius [tex]\(r\)[/tex] is 10, so [tex]\(r^2 = 10^2\)[/tex]. Calculating the square of the radius, we get:
[tex]\[ r^2 = 100 \][/tex]

Substituting [tex]\(h = 0\)[/tex], [tex]\(k = 1\)[/tex], and [tex]\(r^2 = 100\)[/tex] into the standard form equation:
[tex]\[ (x - 0)^2 + (y - 1)^2 = 100 \][/tex]

Simplifying the expression [tex]\((x - 0)^2\)[/tex] to [tex]\(x^2\)[/tex], we get:
[tex]\[ x^2 + (y - 1)^2 = 100 \][/tex]

Therefore, the correct equation of the circle is:
[tex]\[ x^2 + (y - 1)^2 = 100 \][/tex]

So, the correct choice is:
[tex]\[ \boxed{x^2 + (y - 1)^2 = 100} \][/tex]