xand1r
Answered

What is the inverse of [tex]$f(x)=\frac{3x-5}{7}$[/tex]?

A. [tex]$f^{-1}(x)=\frac{3x-7}{5}$[/tex]
B. [tex][tex]$f^{-1}(x)=\frac{3x+5}{7}$[/tex][/tex]
C. [tex]$f^{-1}(x)=\frac{7x+5}{3}$[/tex]
D. [tex]$f^{-1}(x)=\frac{7x-5}{3}$[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = \frac{3x - 5}{7} \)[/tex], let's follow a step-by-step process:

1. Express the function in terms of [tex]\( y \)[/tex]:
[tex]\[ y = \frac{3x - 5}{7} \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to begin solving for the inverse function:
[tex]\[ x = \frac{3y - 5}{7} \][/tex]

3. Isolate [tex]\( y \)[/tex]. First, we multiply both sides of the equation by 7 to get rid of the denominator:
[tex]\[ 7x = 3y - 5 \][/tex]

4. Solve for [tex]\( y \)[/tex] by adding 5 to both sides:
[tex]\[ 7x + 5 = 3y \][/tex]

5. Divide both sides by 3 to isolate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{7x + 5}{3} \][/tex]

Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{7x + 5}{3} \][/tex]

So, the correct answer is:
[tex]\[ f^{-1}(x) = \frac{7x + 5}{3} \][/tex]