Complete the table for the function:

[tex]\[ y = \left(1 + \frac{1}{x}\right)^x \][/tex]

Round your entries to the nearest thousandth.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
1 & 2 \\
\hline
10 & $a$ \\
\hline
100 & $b$ \\
\hline
10,000 & $c$ \\
\hline
100,000 & $d$ \\
\hline
1,000,000 & $e$ \\
\hline
\end{tabular}
\][/tex]

[tex]\[
\begin{array}{l}
a \approx 2.59 \\
b \approx 2.70 \\
c \approx 2.72 \\
d \approx 2.72 \\
e \approx 2.72
\end{array}
\][/tex]



Answer :

To solve for [tex]\( y \)[/tex] in the function [tex]\( y = \left(1 + \frac{1}{x}\right)^x \)[/tex], we need to evaluate this expression at different values of [tex]\( x \)[/tex]. Rounding the results to the nearest thousandth, we create the following table:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 2 \\ \hline 10 & 2.594 \\ \hline 100 & 2.705 \\ \hline 10,000 & 2.718 \\ \hline 100,000 & 2.718 \\ \hline 1,000,000 & 2.718 \\ \hline \end{array} \][/tex]

This table shows us the values of [tex]\( y \)[/tex] for different values of [tex]\( x \)[/tex], rounded to the nearest thousandth:

- When [tex]\( x = 1 \)[/tex], [tex]\( y = 2 \)[/tex]
- When [tex]\( x = 10 \)[/tex], [tex]\( y \approx 2.594 \)[/tex]
- When [tex]\( x = 100 \)[/tex], [tex]\( y \approx 2.705 \)[/tex]
- When [tex]\( x = 10,000 \)[/tex], [tex]\( y \approx 2.718 \)[/tex]
- When [tex]\( x = 100,000 \)[/tex], [tex]\( y \approx 2.718 \)[/tex]
- When [tex]\( x = 1,000,000 \)[/tex], [tex]\( y \approx 2.718 \)[/tex]

Thus, the rounded values are:

[tex]\[ a \approx 2.594 \\ b \approx 2.705 \\ c \approx 2.718 \\ d \approx 2.718 \\ e \approx 2.718 \][/tex]

From these calculations, the values of [tex]\( y \)[/tex] become very close to [tex]\( e \)[/tex] (approximately 2.718) as [tex]\( x \)[/tex] increases, illustrating the concept of the limit of the expression as [tex]\( x \)[/tex] approaches infinity.