A ramp that is being constructed must be 42 inches long and reach a ledge that is 21 inches tall. Which inverse trigonometric ratio could be used to find [tex]m \angle B[/tex]?

A. [tex]\sin^{-1}\left(\frac{21 \sqrt{3}}{42}\right)[/tex]

B. [tex]\sin^{-1}\left(\frac{21}{42}\right)[/tex]

C. [tex]\sin^{-1}\left(\frac{42}{21}\right)[/tex]

D. [tex]\cos^{-1}\left(\frac{21}{42}\right)[/tex]



Answer :

Let's solve the problem step-by-step:

1. Identify the given values:
- The length of the ramp (which can be considered the hypotenuse in a right triangle) is 42 inches.
- The height of the ledge (which can be considered the opposite side to the angle [tex]\( \angle B \)[/tex]) is 21 inches.

2. Determine which trigonometric function to use:
- Since we are given the opposite side and the hypotenuse, we should use the sine function. The sine function relates the angle to the opposite side and the hypotenuse in a right triangle:
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
- Here, [tex]\(\theta = \angle B\)[/tex], the opposite side is 21 inches, and the hypotenuse is 42 inches.

3. Set up the equation for sine:
[tex]\[ \sin(\angle B) = \frac{21}{42} \][/tex]

4. Simplify the fraction:
[tex]\[ \sin(\angle B) = \frac{21}{42} = \frac{1}{2} \][/tex]

5. Finding the angle using the inverse sine function:
- To find [tex]\(\angle B\)[/tex], we use the inverse sine function [tex]\( \sin^{-1} \)[/tex]:
[tex]\[ \angle B = \sin^{-1}\left(\frac{1}{2}\right) \][/tex]

6. Identify the correct inverse trigonometric ratio from the options given:
- We need [tex]\( \sin^{-1}\left(\frac{21}{42}\right) \)[/tex], which simplifies to [tex]\( \sin^{-1}\left(\frac{1}{2}\right) \)[/tex].

Hence, the correct choice is:
\[
\sin ^{-1}\left(\frac{21}{42}\right)
\}