Drag the tiles to the boxes to form correct pairs.

Match each pair of polynomials to their sum:

1. [tex]\(12x^2 + 3x + 6\)[/tex] and [tex]\(-7x^2 - 4x - 2\)[/tex]
2. [tex]\(2x^2 - x\)[/tex] and [tex]\(-x - 2x^2 - 2\)[/tex]
3. [tex]\(x + x^2 + 2\)[/tex] and [tex]\(x^2 - 2 - x\)[/tex]
4. [tex]\(x^2 + x\)[/tex] and [tex]\(x^2 + 8x - 2\)[/tex]

A. [tex]\(5x^2 - x + 4\)[/tex]
B. [tex]\(2x^2 + 9x - 2\)[/tex]
C. [tex]\(-2x - 2\)[/tex]
D. [tex]\(2x^2\)[/tex]

[tex]\(\square\)[/tex] [tex]\(\longleftrightarrow\)[/tex] [tex]\(\square\)[/tex]

[tex]\(\square\)[/tex]

[tex]\(\square\)[/tex]

[tex]\(\square\)[/tex]

[tex]\(\square\)[/tex]

[tex]\(\square\)[/tex]

[tex]\(\square\)[/tex]

[tex]\(\square\)[/tex]



Answer :

Let's go through the process of matching each pair of polynomials to their sum. We'll pair them and sum them as follows:

1. [tex]\( 12x^2 + 3x + 6 \)[/tex] and [tex]\( -7x^2 - 4x - 2 \)[/tex]:

Adding these together:
[tex]\[ 12x^2 + 3x + 6 + (-7x^2 - 4x - 2) = (12x^2 - 7x^2) + (3x - 4x) + (6 - 2) = 5x^2 - x + 4 \][/tex]

2. [tex]\( 2x^2 - x \)[/tex] and [tex]\( -x - 2x^2 - 2 \)[/tex]:

Adding these together:
[tex]\[ 2x^2 - x + (-x - 2x^2 - 2) = (2x^2 - 2x^2) + (-x - x) + (-2) = -2x - 2 \][/tex]

3. [tex]\( x + x^2 + 2 \)[/tex] and [tex]\( x^2 - 2 - x \)[/tex]:

Adding these together:
[tex]\[ x + x^2 + 2 + (x^2 - 2 - x) = (x^2 + x^2) + (x - x) + (2 - 2) = 2x^2 \][/tex]

4. [tex]\( x^2 + x \)[/tex] and [tex]\( x^2 + 8x - 2 \)[/tex]:

Adding these together:
[tex]\[ x^2 + x + (x^2 + 8x - 2) = (x^2 + x^2) + (x + 8x) + (-2) = 2x^2 + 9x - 2 \][/tex]

Now, matching each pair of polynomials to their sum:

- [tex]\( 12x^2 + 3x + 6 \)[/tex] and [tex]\( -7x^2 - 4x - 2 \)[/tex] ⟷ [tex]\( 5x^2 - x + 4 \)[/tex]
- [tex]\( 2x^2 - x \)[/tex] and [tex]\( -x - 2x^2 - 2 \)[/tex] ⟷ [tex]\( -2x - 2 \)[/tex]
- [tex]\( x + x^2 + 2 \)[/tex] and [tex]\( x^2 - 2 - x \)[/tex] ⟷ [tex]\( 2x^2 \)[/tex]
- [tex]\( x^2 + x \)[/tex] and [tex]\( x^2 + 8x - 2 \)[/tex] ⟷ [tex]\( 2x^2 + 9x - 2 \)[/tex]

So, the correct pairs are:

[tex]\[ \begin{aligned} &12x^2 + 3x + 6 \quad \longleftrightarrow \quad 5x^2 - x + 4 \\ &2x^2 - x \quad \longleftrightarrow \quad -2x - 2 \\ & x + x^2 + 2 \quad \longleftrightarrow \quad 2x^2 \\ & x^2 + x \quad \longleftrightarrow \quad 2x^2 + 9x - 2 \end{aligned} \][/tex]