What is the distance between [tex]\((-6, 2)\)[/tex] and [tex]\((8, 10)\)[/tex] on a coordinate grid?

A. [tex]\(\sqrt{60}\)[/tex]

B. [tex]\(\sqrt{68}\)[/tex]

C. [tex]\(\sqrt{162}\)[/tex]

D. [tex]\(\sqrt{260}\)[/tex]



Answer :

To find the distance between the points [tex]\((-6, 2)\)[/tex] and [tex]\( (8, 10) \)[/tex] on a coordinate grid, we use the distance formula:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the two points.

First, let's identify our points:
[tex]\[ (x_1, y_1) = (-6, 2) \][/tex]
[tex]\[ (x_2, y_2) = (8, 10) \][/tex]

Next, we substitute these values into the distance formula:

1. Calculate [tex]\(x_2 - x_1\)[/tex]:
[tex]\[ x_2 - x_1 = 8 - (-6) = 8 + 6 = 14 \][/tex]

2. Calculate [tex]\(y_2 - y_1\)[/tex]:
[tex]\[ y_2 - y_1 = 10 - 2 = 8 \][/tex]

3. Now, square the differences:
[tex]\[ (x_2 - x_1)^2 = 14^2 = 196 \][/tex]
[tex]\[ (y_2 - y_1)^2 = 8^2 = 64 \][/tex]

4. Add these squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 196 + 64 = 260 \][/tex]

5. Finally, take the square root of this sum to find the distance:
[tex]\[ d = \sqrt{260} \][/tex]

Thus, the distance between the points [tex]\((-6, 2)\)[/tex] and [tex]\( (8, 10) \)[/tex] on a coordinate grid is [tex]\(\sqrt{260}\)[/tex].